Skip to main content

Advertisement

Log in

The genomic regions and candidate genes associated with drought tolerance and yield-related traits in foxtail millet: an integrative meta-analysis approach

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Drought stress is one of the most significant limiting factors limiting crop productions. Foxtail millet (Setaria italica) is among the most drought-tolerant crop plants, with a high degree of collinearity with other staple cereals. The present study used a meta-analysis approach to identify genomic regions and candidate genes associated with drought tolerance and yield-related traits in foxtail millet. A meta-analysis employing all 448 collected original quantitative trait loci (QTL) identified 41 meta-QTL (MQTL) on the nine foxtail millet chromosomes. The confidence interval (CI) of the identified MQTL was determined to be 0.31–14.47 cM (5.23 cM average), which was 3.5 times narrower than the mean CI of the original QTL. Based on the available RNA-seq and microarray data, 1631 differentially expressed genes (DEGs) were detected in 41 MQTL. Furthermore, through synteny analysis, 8, 4, and 2 ortho-MQTL were recognized within co-linear regions of foxtail millet with rice (Oryza sativa), barley (Hordeum vulgare), and maize (Zea mays), respectively. To detect the most significant genome regions involved in the genetic control of drought tolerance and yield maintenance in foxtail millet, 10 MQTL with physical intervals of less than 1 Mb and seven hotspot regions with a high QTL-overview index were identified. Several candidate genes involved in foxtail millet sensing and signaling, transcription regulation, ROS inhibition, and adaptation to abiotic stress were detected by seeking drought-responsive genes in MQTL regions with a CI < 1 Mb. We hope that the achieved results would aid in developing new high-yielding drought-tolerant genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  • Acosta-Maspons A, González-Lemes I, Covarrubias AA (2019) Improved protocol for isolation of high-quality total RNA from different organs of Phaseolus vulgaris L. Biotechniques 66(2):96–98

    Article  CAS  PubMed  Google Scholar 

  • Almeida GD, Makumbi D, Magorokosho C, Nair S, Borem A, Ribaut JM, Banziger M, Prasanna BM, Crossa J, Babu R (2013) QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance. Theor Appl Genet 126(3):583–600. https://doi.org/10.1007/s00122-012-2003-7

    Article  CAS  PubMed  Google Scholar 

  • Amirbakhtiar N, Ismaili A, Ghaffari M-R, Mirdar Mansuri R, Sanjari S, Shobbar Z-S (2021) Transcriptome analysis of bread wheat leaves in response to salt stress. PLoS ONE 16(7):e0254189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30(6):555–561

    Article  CAS  PubMed  Google Scholar 

  • Bhat S, Nandini C, Srinathareddy S, Jayarame G (2019) Proso millet (Panicum miliaceum L.)-a climate resilient crop for food and nutritional security: a review. Environ Conserv J 20(3):113–124

    Article  CAS  Google Scholar 

  • Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A (2004) Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168(4):2169–2185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Ma X, Li C, Zhang W, Xia G, Wang M (2014) A wheat aminocyclopropane-1-carboxylate oxidase gene, TaACO1, negatively regulates salinity stress in Arabidopsis thaliana. Plant Cell Rep 33(11):1815–1827

    Article  CAS  PubMed  Google Scholar 

  • Daryani P, Darzi Ramandi H, Dezhsetan S, Mirdar Mansuri R, Hosseini Salekdeh G, Shobbar Z-S (2022) Pinpointing genomic regions associated with root system architecture in rice through an integrative meta-analysis approach. Theor Appl Genet 135(1):81–106

    Article  CAS  PubMed  Google Scholar 

  • Davletova S, Schlauch K, Coutu J, Mittler R (2005) The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol 139(2):847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devi R, Kaur M, Gosal S (2016) Generation of drought tolerance in Indica rice by introducing ZAT12 gene. Appl Biol Res 18(2):208–213

    Article  Google Scholar 

  • Diao X, Schnable J, Bennetzen JL, Li J (2014) Initiation of Setaria as a model plant. Front Agric Sci Eng 1(1):16–20

    Article  Google Scholar 

  • Egamberdieva D, Wirth SJ, Alqarawi AA, Abd Allah EF, Hashem A (2017) Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol 8:2104

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellsworth PZ, Feldman MJ, Baxter I, Cousins AB (2020) A genetic link between leaf carbon isotope composition and whole-plant water use efficiency in the C4 grass Setaria. Plant J 102(6):1234–1248

    Article  CAS  PubMed  Google Scholar 

  • Fang X, Dong K, Wang X, Liu T, He J, Ren R, Zhang L, Liu R, Liu X, Li M (2016) A high density genetic map and QTL for agronomic and yield traits in Foxtail millet [Setaria italica (L.) P. Beauv.]. BMC Genom 17(1):336

    Article  Google Scholar 

  • Feldman MJ, Paul RE, Banan D, Barrett JF, Sebastian J, Yee M-C, Jiang H, Lipka AE, Brutnell TP, Dinneny JR (2017) Time dependent genetic analysis links field and controlled environment phenotypes in the model C4 grass Setaria. PLoS Genet 13(6):e1006841

    Article  PubMed  PubMed Central  Google Scholar 

  • Feldman MJ, Ellsworth PZ, Fahlgren N, Gehan MA, Cousins AB, Baxter I (2018) Components of water use efficiency have unique genetic signatures in the model C4 grass Setaria. Plant Physiol 178(2):699–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge L, Dou Y, Li M, Qu P, He Z, Liu Y, Xu Z, Chen J, Chen M, Ma Y (2019) SiMYB3 in foxtail millet (Setaria italica) confers tolerance to low-nitrogen stress by regulating root growth in transgenic plants. Int J Mol Sci 20(22):5741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155(1):463–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Kumari K, Sahu PP, Vidapu S, Prasad M (2012) Sequence-based novel genomic microsatellite markers for robust genotyping purposes in foxtail millet [Setaria italica (L.) P. Beauv.]. Plant Cell Rep 31(2):323–337

    Article  CAS  PubMed  Google Scholar 

  • He Z, Chen M, Ling B, Cao T, Wang C, Li W, Tang W, Chen K, Zhou Y, Chen J (2023) Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setaria italica L) in transgenic wheat confers tolerance to phosphorus starvation. Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2023.01.061

    Article  PubMed  Google Scholar 

  • Hossein V, Mohammadi-Nejad G, Eslam M-H, Babak N, Farokh D-K (2017) Field screening for drought tolerance in Setaria italica and Panicum miliaceum millet germplasm from Iran. Indian J Genet Plant Breeding 77(01):83–91

    Article  Google Scholar 

  • Kansal, R., Kuhar, K., Verma, I., Gupta, R. N., Gupta, V. K., & Koundal, K. R (2008) Improved and convenient method of RNA isolation from polyphenols and polysaccharide rich plant tissues.

  • Katiyar A, Smita S, Lenka SK, Rajwanshi R, Chinnusamy V, Bansal KC (2012) Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genom 13(1):1–19

    Article  Google Scholar 

  • Khahani B, Tavakol E, Shariati V (2019) Genome-wide meta-analysis on yield and yield-related QTLs in barley (Hordeum vulgare L.). Mol Breeding 39(4):56

    Article  Google Scholar 

  • Khahani B, Tavakol E, Shariati V, Fornara F (2020) Genome wide screening and comparative genome analysis for Meta-QTLs, ortho-MQTLs and candidate genes controlling yield and yield-related traits in rice. BMC Genomics 21:1–24

    Article  Google Scholar 

  • Khan Y, Yadav A, Bonthala VS, Muthamilarasan M, Yadav CB, Prasad M (2014) Comprehensive genome-wide identification and expression profiling of foxtail millet [Setaria italica (L.)] miRNAs in response to abiotic stress and development of miRNA database. Plant Cell, Tissue Organ Cult (PCTOC) 118:279–292. https://doi.org/10.1007/s11240-014-0480-x

  • Kumar K, Muthamilarasan M, Prasad M (2013) Reference genes for quantitative real-time PCR analysis in the model plant foxtail millet (Setaria italica L.) subjected to abiotic stress conditions. Plant Cell Tissue Organ Cult (PCTOC) 115:13–22

    Article  CAS  Google Scholar 

  • Lata C, Gupta S, Prasad M (2013) Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol 33(3):328–343. https://doi.org/10.3109/07388551.2012.716809

    Article  PubMed  Google Scholar 

  • Li CR, Liang DD, Li J, Duan YB, Li HAO, Yang YC, Qin RY, Li LI, Wei PC, Yang JB (2013) Unravelling mitochondrial retrograde regulation in the abiotic stress induction of rice alternative oxidase 1 genes. Plant, Cell Environ 36(4):775–788

    Article  CAS  PubMed  Google Scholar 

  • Li C, Yue J, Wu X, Xu C, Yu J (2014) An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress. J Exp Bot 65(18):5415–5427. https://doi.org/10.1093/jxb/eru302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively. Arabidopsis the Plant Cell 10(8):1391–1406

    Article  CAS  PubMed  Google Scholar 

  • Liu T, He J, Dong K, Wang X, Wang W, Yang P, Ren R, Zhang L, Zhang Z, Yang T (2020) QTL mapping of yield component traits on bin map generated from resequencing a RIL population of foxtail millet (Setaria italica). BMC Genom 21(1):1–13. https://doi.org/10.1186/s12864-020-6553-9

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Mauro-Herrera M, Doust AN (2016) Development and genetic control of plant architecture and biomass in the panicoid grass. Setaria Plos One 11(3):e0151346

    Article  PubMed  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11(1):15–19. https://doi.org/10.1016/j.tplants.2005.11.002

    Article  CAS  PubMed  Google Scholar 

  • Nematpour A, Eshghizadeh HR, Zahedi M (2019) Drought-tolerance mechanisms in foxtail millet (Setaria italica) and proso millet (Panicum miliaceum) under different nitrogen supply and sowing dates. Crop Pasture Sci 70(5):442–452

    Article  Google Scholar 

  • Noori R, Maghrebi M, Mirchi A, Tang Q, Bhattarai R, Sadegh M, Noury M, Torabi Haghighi A, Kløve B, Madani K (2021) Anthropogenic depletion of Iran’s aquifers. Proc Natl Acad Sci 118(25):e2024221118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pospíšilová J, Synková H, Rulcová J (2000) Cytokinins and water stress. Biol Plant 43(3):321–328

    Article  Google Scholar 

  • Prasad M (2017) The foxtail millet genome. Springer, Cham

    Book  Google Scholar 

  • Qie L, Jia G, Zhang W, Schnable J, Shang Z, Li W, Liu B, Li M, Chai Y, Zhi H (2014) Mapping of quantitative trait locus (QTLs) that contribute to germination and early seedling drought tolerance in the interspecific cross Setaria italica× Setaria viridis. PLoS ONE 9(7):e101868

    Article  PubMed  PubMed Central  Google Scholar 

  • Quraishi UM, Murat F, Abrouk M, Pont C, Confolent C, Oury FX, Ward J, Boros D, Gebruers K, Delcour JA (2011) Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.). Funct Integr Genom 11(1):71–83

    Article  CAS  Google Scholar 

  • Rifkin SA (2012) Quantitative trait loci (QTL): methods and protocols. Springer, Cham

    Book  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23(3):319–327

    Article  CAS  PubMed  Google Scholar 

  • Salehi-Lisar SY, Bakhshayeshan-Agdam H (2016) Drought stress in plants: causes, consequences, and tolerance. In: Hussain S, Hossain MA (eds) Drought Stress Tolerance in Plants, vol 1. Springer, Cham, pp 1–16

    Google Scholar 

  • Sebastian J, Yee M-C, Viana WG, Rellán-Álvarez R, Feldman M, Priest HD, Trontin C, Lee T, Jiang H, Baxter I (2016) Grasses suppress shoot-borne roots to conserve water during drought. Proc Natl Acad Sci 113(31):8861–8866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semagn K, Beyene Y, Warburton ML, Tarekegne A, Mugo S, Meisel B, Sehabiague P, Prasanna BM (2013) Meta-analyses of QTL for grain yield and anthesis silking interval in 18 maize populations evaluated under water-stressed and well-watered environments. BMC Genom 14(1):313

    Article  Google Scholar 

  • Shi W, Cheng J, Wen X, Wang J, Shi G, Yao J, Hou L, Sun Q, Xiang P, Yuan X (2018) Transcriptomic studies reveal a key metabolic pathway contributing to a well-maintained photosynthetic system under drought stress in foxtail millet (Setaria italica L.). PeerJ. https://doi.org/10.7717/peerj.4752

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh AK, Kumar R, Tripathi AK, Gupta BK, Pareek A, Singla-Pareek SL (2015) Genome-wide investigation and expression analysis of Sodium/Calcium exchanger gene family in rice and Arabidopsis. Rice 8(1):1–16

    Article  Google Scholar 

  • Singh RK, Muthamilarasan M, Prasad M (2017) Foxtail millet: an introduction. In: Prasad M (ed) The foxtail millet genome. Springer, Cham, pp 1–9

    Google Scholar 

  • Stanislaus AC, Baker A, Ignacimuthu I (2017) Functional characterization of the PHT1 family transporters of foxtail millet with a novel Agrobacterium-mediated transformation procedure. Sci Rep. https://doi.org/10.1038/s41598-017-14447-0

    Article  Google Scholar 

  • Swamy BM, Vikram P, Dixit S, Ahmed H, Kumar A (2011) Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus. BMC Genom 12(1):319

    Article  Google Scholar 

  • Tang S, Li L, Wang Y, Chen Q, Zhang W, Jia G, Zhi H, Zhao B, Diao X (2017) Genotype-specific physiological and transcriptomic responses to drought stress in Setaria italica (an emerging model for Panicoideae grasses). Sci Rep 7(1):1–15

    Google Scholar 

  • Thirunavukkarasu N, Hossain F, Arora K, Sharma R, Shiriga K, Mittal S, Mohan S, Namratha PM, Dogga S, Rani TS (2014) Functional mechanisms of drought tolerance in subtropical maize (Zea mays L.) identified using genome-wide association mapping. BMC Genomics 15(1):1–12

    Article  Google Scholar 

  • Vaezi H, Mohammadi-Nejad G, Majidi-Heravan E, Nakhoda B, Darvish-Kajouri F (2020) Effective selection indices for improving tolerance to water stress in millet germplasm. Int J Plant Prod 14:93–105

    Article  Google Scholar 

  • Wang M, Li P, Li C, Pan Y, Jiang X, Zhu D, Zhao Q, Yu J (2014) SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet. BMC Plant Biol 14(1):290. https://doi.org/10.1186/s12870-014-0290-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Wang Z, Du X, Yang H, Han F, Han Y, Yuan F, Zhang L, Peng S, Guo E (2017) A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] using RAD-seq. PLoS ONE 12(6):e0179717

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Wang J, Peng J, Du X, Jiang M, Li Y, Han F, Du G, Yang H, Lian S (2019) QTL mapping for 11 agronomic traits based on a genome-wide Bin-map in a large F 2 population of foxtail millet (Setaria italica (L.) P. Beauv.). Mol Breeding 39(2):18

    Article  Google Scholar 

  • Xiong H, Li J, Liu P, Duan J, Zhao Y, Guo X, Li Y, Zhang H, Ali J, Li Z (2014) Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS ONE 9(3):e92913

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Amo A, Wei D, Chai Y, Zheng J, Qiao P, Cui C, Lu S, Chen L, Hu Y-G (2021) Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat. Theor Appl Genet. https://doi.org/10.1007/s00122-021-03881-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Chen C, Li L, Meng L, Singh J, Jiang N, Deng X-W, He Z-H, Lemaux PG (2005) Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family. Plant Physiol 139(3):1107–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30(6):549–554

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Zhang Q, Wu J, Zheng X, Zheng S, Sun X, Qiu Q, Lu T (2013) Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PLoS ONE 8(2):e57472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Shabala S, Koutoulis A, Shabala L, Zhou M (2017) Meta-analysis of major QTL for abiotic stress tolerance in barley and implications for barley breeding. Planta 245(2):283–295

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Hu W, Deng X, Ma Z, Chen L, Huang C, Wang C, Wang J, He Y, Yang G (2012) Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. PLoS ONE 7(12):e52439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by Agricultural Biotechnology Research Institute of Iran (ABRII) (Grant No.: 12-05-05-017-96062-980197) and Biotechnology Development Council of the Islamic Republic of Iran (Grant No.: 980801).

Author information

Authors and Affiliations

Authors

Contributions

FL and HDR performed the meta-analysis, drafted the manuscript and drew the graphs. FL analyzed the microarray data. The project was conceived, coordinated and supervised by Z-SS, who also revised the manuscript. The final manuscript was checked by AI and BN. All the authors reviewed and approved the final version of the manuscript.

Corresponding authors

Correspondence to Ahmad Ismaili or Zahra-Sadat Shobbar.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to declare.

Additional information

Communicated by Ben Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loni, F., Ismaili, A., Nakhoda, B. et al. The genomic regions and candidate genes associated with drought tolerance and yield-related traits in foxtail millet: an integrative meta-analysis approach. Plant Growth Regul 101, 169–185 (2023). https://doi.org/10.1007/s10725-023-01010-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-023-01010-3

Keywords

Navigation