Skip to main content

Advertisement

Log in

Nitric oxide affects melatonin mediates enrichment of isoflavones and physiological biochemistry in germinated soybeans under Ultraviolet-B stress

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The role of nitric oxide (NO) in exogenous melatonin (MT)-induced isoflavone accumulation under ultraviolet-B (UV-B) stress in germinated soybeans was investigated. Compared to UV-B stress alone, exogenous MT (25 µM) and sodium nitroprusside (SNP), an NO releaser, significantly enhanced NO content by improving nitrate reductase (NR) activity and upregulated the gene expression of NR1, NR2, and nitric oxide synthase in UV-B-stressed soybeans. However, exogenous MT combined with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), an NO scavenger, markedly decreased the NO content; it decreased by 9.76% and 18.42% in 2- and 4-day-old soybeans, respectively. Meanwhile, MT-triggered NO generation promoted isoflavone accumulation by enhancing phenylalanine amination (PAL) and cinnamic acid 4-hydroxylase activities and by upregulating the gene expression of key enzymes (PAL1, 4-coumarate coenzyme A ligase, RNA decarboxylase 3, Chalcone isomerase 1 A, Chalcone synthase). Furthermore, it alleviated the UV-B stress inhibition by enhancing the antioxidant system and reducing the accumulation of reactive oxygen species. These effects were further enhanced by the application of SNP but inhibited by the application of cPTIO. Therefore, NO is an essential downstream-signaling molecule that mediates MT-induced isoflavone accumulation and growth improvement under UV-B stress in germinated soybeans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad P, Ahanger MA, Alyemeni MN, Wijaya L, Alam P (2017) Exogenous application of nitric oxide modulates osmolyte metabolism, antioxidants, enzymes of ascorbate-glutathione cycle and promotes growth under cadmium stress in tomato. Protoplasma 255(1):79–93

    Article  PubMed  Google Scholar 

  • Ahmad S, Kamran M, Zhou X, Ahmad I, Meng X, Javed T, Iqbal A, Wang G, Su W, Wu X, Ahmad P, Han Q (2021) Melatonin improves the seed filling rate and endogenous hormonal mechanism in grains of summer maize. Physiol Plant 172(2):1059–1072

    Article  CAS  PubMed  Google Scholar 

  • Arese M, Magnifico MC, Mastronicola D, Altieri F, Grillo C, Blanck TJJ, Sarti P (2012) Nanomolar melatonin enhances nNOS expression and controls HaCaT-cells bioenergetics. IUBMB Life 64(3):251–258

    Article  CAS  PubMed  Google Scholar 

  • Birat K, Siddiqi TO, Mir SR, Aslan J, Bansal R, Khan W, Dewangan RP, Panda BP (2022) Enhancement of vincristine under in vitro culture of Catharanthus roseus supplemented with Alternaria sesami endophytic fungal extract as a biotic elicitor. Int Microbiol 25(2):275–284

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Feng H, Zhang M, Wang X (2003) Nitric oxide alleviates oxidative damage in the green alga Chlorella pyrenoidosa caused by UV-B radiation. Folia Microbiol (Praha) 48(3):389–393

    Article  CAS  PubMed  Google Scholar 

  • Cheng C, Liu Y, Fang W, Tao J, Yang Z, Yin Y (2020) iTRAQ-based proteomic and physiological analyses of mustard sprouts in response to heat stress. RSC Adv 10(10):6052–6062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debnath B, Islam W, Li M, Sun Y, Lu X, Mitra S, Hussain M, Liu S, Qiu D (2019) Melatonin mediates enhancement of stress tolerance in plants. Int J Mol Sci 20(5):1–17

    Article  Google Scholar 

  • Djeridane A, Yousfi M, Nadjemi B, Boutassouna D, Stocker P, Vidal N (2006) Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chem 97(4):654–660

    Article  CAS  Google Scholar 

  • Engelhardt L, Pöhnl T, Neugart S (2022) Edible wild vegetables Urtica dioica L. and Aegopodium podagraria L.-Antioxidants affected by Processing. Plants 11:20

    Article  Google Scholar 

  • Gao H, Lu Z, Yang Y, Wang D, Yang T, Cao M, Cao W (2018) Melatonin treatment reduces chilling injury in peach fruit through its regulation of membrane fatty acid contents and phenolic metabolism. Food Chem 245:659–666

    Article  CAS  PubMed  Google Scholar 

  • Gu Q, Xiao Q, Chen Z, Han Y (2022) Crosstalk between melatonin and reactive oxygen species in Plant Abiotic stress responses: an update. Int J Mol Sci 23(10):5666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajihashemi S, Jahantigh O (2022) Nitric oxide effect on growth, physiological and biochemical processes, flowering, and postharvest performance of Narcissus tazzeta.J Plant Growth Regul:1–16

  • Jafari M, Shahsavar A (2021) The effect of foliar application of melatonin on changes in secondary metabolite contents in two Citrus species under drought stress conditions.Front Plant Sci:1509

  • Jaworski EG (1971) Nitrate reductase assay in intact plant tissues. Biochem Biophys Res Commun 43(6):1274–1279

    Article  CAS  PubMed  Google Scholar 

  • Jiao C, Yang R, Zhou Y, Gu Z (2016) Nitric oxide mediates isoflavone accumulation and the antioxidant system enhancement in soybean sprouts. Food Chem 204:373–380

    Article  CAS  PubMed  Google Scholar 

  • Kaya C, Okant M, Ugurlar F, Alyemeni MN, Ashraf M, Ahmad P (2019) Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants. Chemosphere 225:627–638

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Kim DW, Kim K, Choe JS, Lee HJ (2022) Usual intake of dietary isoflavone and its major food sources in Koreans: Korea National Health and Nutrition Examination Survey 2016–2018 data. Nutr Res Pract 16:S134–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kochs G, Grisebach H (1986) Enzymic synthesis of isoflavones. Eur J Biochem 155(2):311–318

    Article  CAS  PubMed  Google Scholar 

  • Kumar G, Saad KR, Arya M, Puthusseri B, Mahadevappa P, Shetty NP, Giridhar P (2021a) The synergistic role of serotonin and melatonin during temperature stress in promoting cell division, ethylene and isoflavones biosynthesis in Glycine max. Curr Plant Biol 26:100206

    Article  CAS  Google Scholar 

  • Kumar G, Saad KR, Puthusseri B, Arya M, Shetty NP, Giridhar P (2021b) Exogenous serotonin and melatonin regulate dietary isoflavones profoundly through ethylene biosynthesis in soybean [Glycine max (L.) Merr.]. J Agric Food Chem 69(6):1888–1899

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhang L, Ahammed GJ, Li Z-X, Wei J-P, Shen C, Yan P, Zhang L-P, Han W-Y (2017) Nitric oxide mediates brassinosteroid-induced flavonoid biosynthesis in Camellia sinensis L. J Plant Physiol 214:145–151

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Gong B, Jin Z, Wang X, Wei M, Yang F, Li Y, Shi Q (2015) Sodic alkaline stress mitigation by exogenous melatonin in tomato needs nitric oxide as a downstream signal. J Plant Physiol 186–187:68–77

    Article  PubMed  Google Scholar 

  • Ma J, Saleem MH, Yasin G, Mumtaz S, Qureshi FF, Ali B, Ercisli S, Alhag SK, Ahmed AE, Vodnar DC, Hussain I, Marc RA, Chen F (2022) Individual and combinatorial effects of SNP and NaHS on morpho-physio-biochemical attributes and phytoextraction of chromium through Cr-stressed spinach (Spinacia oleracea L.). Front Plant Sci 13:973740

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma M, Wang P, Yang R, Gu Z (2018) Effects of UV-B radiation on the isoflavone accumulation and physiological-biochemical changes of soybean during germination: physiological-biochemical change of germinated soybean induced by UV-B. Food Chem 250:259–267

    Article  CAS  PubMed  Google Scholar 

  • Ma M, Wang P, Yang R, Zhou T, Gu Z (2019) UV-B mediates isoflavone accumulation and oxidative-antioxidant system responses in germinating soybean. Food Chem 275:628–636

    Article  CAS  PubMed  Google Scholar 

  • Miranda S, Vilches P, Suazo M, Pavez L, García K, Méndez MA, González M, Meisel LA, Defilippi BG, del Pozo T (2020) Melatonin triggers metabolic and gene expression changes leading to improved quality traits of two sweet cherry cultivars during cold storage. Food Chem 319:1–8

    Article  Google Scholar 

  • Nabaei M, Amooaghaie R (2019) Nitric oxide is involved in the regulation of melatonin-induced antioxidant responses in Catharanthus roseus roots under cadmium stress. Botany 97(12):681–690

    Article  CAS  Google Scholar 

  • Okant M, Kaya C (2019) The role of endogenous nitric oxide in melatonin-improved tolerance to lead toxicity in maize plants. Environ Sci Pollut Res 26(12):11864–11874

    Article  CAS  Google Scholar 

  • Pardo-Hernández M, López-Delacalle M, Rivero RM (2020) ROS and NO regulation by melatonin under abiotic stress in plants. Antioxidants 9(11):1–10

    Article  Google Scholar 

  • Qin W, Guo J, Gou W, Wu S, Guo N, Zhao Y, Hou W (2022) Molecular mechanisms of isoflavone puerarin against cardiovascular diseases: what we know and where we go. Chin Herb Med 14:234–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi H, Chen Y, Tan D-X, Reiter RJ, Chan Z, He C (2015) Melatonin induces nitric oxide and the potential mechanisms relate to innate immunity against bacterial pathogen infection in Arabidopsis. J Pineal Res 59(1):102–108

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Alamri S, Nasir Khan M, Corpas FJ, Al-Amri AA, Alsubaie QD, Ali HM, Kalaji HM, Ahmad P (2020) Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress. J Hazard Mater 398:122882

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Kumar V, Kapoor D, Kumar S, Singh S, Dhanjal DS, Datta S, Samuel J, Dey P, Wang S (2020) Revealing on hydrogen sulfide and nitric oxide signals co-ordination for plant growth under stress conditions. Physiol Plant 168(2):301–317

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Liu L, Zhang L, Lv H, He Q, Guo L, Zhang X, He H, Ren S, Zhang N (2020) Melatonin promotes carotenoid biosynthesis in an ethylene-dependent manner in tomato fruits. Plant Sci 298:110580

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Luo Z, Yang M, Li D, Qi M, Xu Y, Abdelshafy AM, Ban Z, Wang F, Li L (2020) Role of exogenous melatonin in table grapes: first evidence on contribution to the phenolics-oriented response. Food Chem 329:127155

    Article  CAS  PubMed  Google Scholar 

  • Wen D, Gong B, Sun S, Liu S, Wang X, Wei M, Yang F, Li Y, Shi Q (2016) Promoting roles of melatonin in adventitious root development of Solanum lycopersicum L. by regulating auxin and nitric oxide signaling. Front Plant Sci 7:718–718

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao J-W, Ma Z, Ma Y-Q, Zhu Y, Lei M-Q, Hao C-Y, Chen L-Y, Xu Z-Q, Huang X (2021) Role of melatonin in UV-B signaling pathway and UV-B stress resistance in Arabidopsis thaliana. Plant Cell Environ 44(1):114–129

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Tian X, Yang J, Yang Z, Tao J, Fang W (2022a) Melatonin mediates isoflavone accumulation in germinated soybeans (Glycine max L.) under ultraviolet-B stress. Plant Physiol Biochem 175:23–32

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Xu J, He X, Yang Z, Fang W, Tao J (2022b) Role of exogenous melatonin involved in phenolic acid metabolism of germinated hulless barley under NaCl stress. Plant Physiol Biochem 170:14–22

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Gao C, Xu L, Niu H, Liu Q, Huang Y, Lv G, Yang H, Li M (2022) Melatonin and Indole-3-acetic acid synergistically regulate plant growth and stress resistance. Cells 11:20

    CAS  Google Scholar 

  • Zhang M, He S, Qin B, Jin X, Wang M, Ren C, Cao L, Zhang Y (2020) Exogenous melatonin reduces the inhibitory effect of osmotic stress on antioxidant properties and cell ultrastructure at germination stage of soybean. PLoS ONE 15(12):e0243537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao G, Zhao Y, Yu X, Kiprotich F, Han H, Guan R, Wang R, Shen W (2018) Nitric oxide is required for melatonin-enhanced tolerance against salinity stress in rapeseed (Brassica napus L.) seedlings. Int J Mol Sci 19(7):1–22

    Article  CAS  Google Scholar 

  • Zhou B, Guo Z, Xing J (2005) Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. J Exp Bot 56(422):3223–3228

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Liu Z, Zhu L, Ma Z, Wang J, Zhu J (2016) Exogenous melatonin improves plant iron deficiency tolerance via increased accumulation of polyamine-mediated nitric oxide. Int J Mol Sci 17(11):1–17

    Article  CAS  Google Scholar 

  • Zhu Y, Gao H, Lu M, Hao C, Pu Z, Guo M, Hou D, Chen L-Y, Huang X (2019) Melatonin-nitric oxide crosstalk and their roles in the redox network in plants. Int J Mol Sci 20(24):6200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The project was financed by China Postdoctoral Science Foundation (2019M651978). We gratefully acknowledge the assistance of Dr. Jia Yang in the written review.

Author information

Authors and Affiliations

Authors

Contributions

Yongqi Yin: designed the study and wrote manuscript. Renjiao Zhang: performed experiments and drafted manuscript. Xin Tian: performed experiments. Zhengfei Yang: reviewed writing. Weiming Fang: designed the research and reviewed the manuscript.

Corresponding author

Correspondence to Weiming Fang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Communicated by Carlos Garcia-Mata.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Y., Zhang, R., Tian, X. et al. Nitric oxide affects melatonin mediates enrichment of isoflavones and physiological biochemistry in germinated soybeans under Ultraviolet-B stress. Plant Growth Regul 100, 657–666 (2023). https://doi.org/10.1007/s10725-022-00958-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-022-00958-y

Keywords

Navigation