Skip to main content
Log in

Soybean late embryogenesis abundant protein GmLEA4 interacts with GmCaM1, enhancing seed vigor in transgenic Arabidopsis under high temperature and humidity stress

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Calmodulin (CaM) as a ubiquitous Ca2+-binding protein is involved in multiple signaling processes expressed in all the eukaryotic cells, while the late embryogenesis abundant (LEA) proteins are a large family of hydrophilic proteins that accumulate in developing seeds to ensure protection against water deficit stress. In our previous study, GmLEA4 was screened as a candidate GmCaM1-interacting protein by yeast two-hybrid assay while GmCaM1 was found to be highly related to the formation of seed vigor under high temperature and humidity (HTH) stress in soybean. In the present study, GmLEA4 was localized on the cell membrane and nucleus. The interaction between GmCaM1 and GmLEA4 was further confirmed by yeast two-hybrid assay, bimolecular fluorescence complementation (BiFC) and GST pull down. GmLEA4 and GmCaM1 showed higher expression levels in seeds than in other tissues and were involved in response to HTH stress. The overexpression of GmCaM1 and GmLEA4 in Arabidopsis raised the ROS scavenging ability in seeds and improved seed vitality under HTH stress. Our results indicated that GmLEA4 interacts with GmCaM1, maybe participating in seed vigor formation under HTH stress in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BiFC:

Bimolecular fluorescence complementation

CaM:

Calmodulin

CV:

Cultivar

LEA4:

Late embryogenesis abundant 4

GFP:

Green fluorescent protein

HTH:

High temperature and humidity

HT:

High temperature

HH:

High humidity

ORF:

Open reading frame

PCR:

Polymerase chain reaction

qRT-PCR:

Quantitative reverse transcription PCR

ROS:

Reactive oxygen species

YFP:

Yellow fluorescent protein

WT:

Wild type

CAT:

Catalase

SOD:

Superoxide

POD:

Peroxidase

MDA:

Malondialdehyde

References

  • Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148(1):6–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Battaglia M, Covarrubias AA (2013) Late embryogenesis abundant (LEA) proteins in legumes. Front Plant Sci 4:190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergey DR, Kandel R, Tyree BK, Dutt M, Dhekney SA (2014) The role of calmodulin and related proteins in plant cell function: an ever-thickening plot. Sci Rev 2(1):145–159

    Google Scholar 

  • Candat A, Paszkiewicz G, Neveu M, Gautier R, Logan DC, Avelange-Macherel MH, Macherel D (2014) The ubiquitous distribution of late embryogenesis abundant proteins across cell compartments in Arabidopsis offers tailored protection against abiotic stress. Plant Cell 26(7):3148–3166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA 101(26):9909–9914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabortee S, Boschetti C, Walton LJ, Sarkar S, Rubinsztein DC, Tunnacliffe A (2007) Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function. Proc Natl Acad Sci USA 104(46):18073–18078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HH, Chu P, Zhou YL, Ding T, Li Y, Liu J, Jiang LW, Huang SZ (2016) Ectopic expression of NnPER1, a Nelumbo nucifera 1-cysteine peroxiredoxin antioxidant, enhances seed longevity and stress tolerance in Arabidopsis. Plant J 88(4):608–619

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Li C, Zhang B, Yi J, Yang Y, Kong C, Lei C, Gong M (2019) The role of the late embryogenesis-abundant (LEA) protein family in development and the abiotic stress response: a comprehensive expression analysis of potato (Solanum tuberosum). Genes 10(2):148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for a grobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Costanzi E, Coletti A, Zambelli B, Macchiarulo A, Bellanda M, Battistutta R (2021) Calmodulin binds to the STAS domain of SLC26A5 prestin with a calcium-dependent, one-lobe, binding mode. J Struct Biol 213(2):107714

    Article  CAS  PubMed  Google Scholar 

  • Dubrovina AS, Aleynova OA, Ogneva ZV, Suprun AR, Ananev AA, Kiselev KV (2019) The effect of abiotic stress conditions on expression of Calmodulin (CaM) and Calmodulin-Like (CML) genes in wild-growing grapevine Vitis amurensis. Plants 8(12):602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuki T, Sakurai M (2016) Group 3 LEA protein model peptides protect enzymes against desiccation stress. Biochim Biophys Acta 1864(9):1237–1243

    Article  CAS  PubMed  Google Scholar 

  • Ghorbel M, Zribi I, Missaoui K, Drira-Fakhfekh M, Azzouzi B, Brini F (2020) Differential regulation of the durum wheat Pathogenesis-related protein (PR1) by Calmodulin TdCaM1.3 protein. Mol Biol Rep 48(1):347–362

    Article  PubMed  Google Scholar 

  • Gómez-Esquivel ML, Guidos-Fogelbach GA, Rojo-Gutiérrez MI, Mellado-Abrego J, Bermejo-Guevara MA, Castillo-Narváez G, Velázquez-Sámano G, Velasco-Medina AA, Moya-Almonte MG, Vallejos-Pereira CM, López-Hidalgo M, Godínez-Victoria M, Reyes-López CA (2021) Identification of an allergenic calmodulin from Amaranthus palmeri pollen. Mol Immunol 132:150–156

    Article  PubMed  Google Scholar 

  • Grant M, Brown I, Adams S, Knight M, Ainslie A, Mansfield J (2000) The RPMI plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant J 23(4):441–450

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Senchez IE, Martynowicz DM, Rodríguez-Hernández AA, Pérez-Morales MB, Graether SP, Jiménez-Bremont JF (2014) A dehydrin-dehydrin interaction: the case of SK3 from Opuntia streptacantha. Front Plant Sci 5:520

    Google Scholar 

  • Huang L, Zhang M, Jia J, Zhao X, Huang X, Ji E, Ni L, Jiang M (2018) An atypical late embryogenesis abundant protein OsLEA5 plays a positive role in ABA induced antioxidant defense in Oryza sativa L. Plant Cell Physiol 59(5):916–929

    Article  CAS  PubMed  Google Scholar 

  • Kiep V, Vadassery J, Lattke J, Maaß JP, Boland W, Peiter E, Mithöfer A (2015) Systemic cytosolic Ca2+ elevation is activated upon wounding and herbivory in Arabidopsis. New Phytol 207(4):996–1004

    Article  CAS  PubMed  Google Scholar 

  • Kim MC, Chung WS, Yun D, Cho MJ (2009) Calcium and calmodulin-mediated regulation of gene expression in plants. Mol Plant 2(1):13–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22(3):541–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai M, Brun D, Edelstein SJ, Novère NL (2015) Modulation of calmodulin lobes by different targets: an allosteric model with hemiconcerted conformational transitions. PLoS Comput Biol 11(1):e1004063

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang J, Zhou M, Zhou X, Jin Y, Xu M, Lin J (2013) JcLEA, a novel LEA-like protein from Jatropha curcas, confers a high level of tolerance to dehydration and salinity in Arabidopsis thaliana. PLoS ONE 8(12):e83056

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Kang K, Gan L, Ning S, Xiong J, Song S, Xi L, Lai S, Yin Y, Gu J, Xiang J, Li S, Wang B, Li M (2019) Drought-responsive genes, late embryogenesis abundant group3 (LEA3) and vicinal oxygen chelate, function in lipid accumulation in Brassica napus and Arabidopsis mainly via enhancing photosynthetic efficiency and reducing ROS. Plant Biotechnol J 17(11):2123–2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Wang L, Xing X, Sun LP, Pan JW, Kong XP, Zhang MY, Li DQ (2013) ZmLEA3, a multifunctional group 3 LEA protein from maize (Zea mays L.), is involved in biotic and abiotic stresses. Plant Cell Physiol 54(6):944–959

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Liang J, Sun L, Yang X, Li D (2016) Group 3 LEA protein, ZmLEA3, is involved in protection from low temperature stress. Front Plant Sci 7:1011

    PubMed  PubMed Central  Google Scholar 

  • Liu SS, Liu YM, Jia YH, Wei JP, Wang S, Liu XL, Zhou YL, Zhu YJ, Gu WH, Ma H (2017) Gm1-MMP is involved in growth and development of leaf and seed, and enhances tolerance to high temperature and humidity stress in transgenic Arabidopsis. Plant Sci 259:48–61

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Xing M, Yang W, Mu X, Wang X, Lu F, Wang Y, Zhang L (2019) Genome-wide identification of and functional insights into the late embryogenesis abundant (LEA) gene family in bread wheat (Triticum aestivum). Sci Rep 9(1):13375

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao ZL, Sun WN (2015) Arabidopsis seed-specific vacuolar aquaporins are involved in maintaining seed longevity under the control of abscisic acid insensitive 3. J Exp Bot 66(15):4781–4794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall CB, Nishikawa T, Osawa M, Stathopulos PB, Ikura M (2015) Calmodulin and STIM proteins: two major calcium sensors in the cytoplasm and endoplasmic reticulum. Biochem Biophys Res Commun 460(1):5–21

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  PubMed  Google Scholar 

  • Ndong C, Danyluk J, Wilson KE, Pocock T, Huner NPA, Sarhan F (2002) Cold-regulated cereal chloroplast late embryogenesis abundant like proteins-molecular characterization and functional analyses. Plant Physiol 129(3):1368–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noman M, Aysha J, Ketehouli T, Yang J, Du LN, Wang FW, Li HY (2021) Calmodulin binding transcription activators: An interplay between calcium signalling and plant stress tolerance. J Plant Physiol 256:153327

    Article  CAS  PubMed  Google Scholar 

  • Olvera-Carrillo Y, Reyes JL, Covarrubias AA (2011) Late embryogenesis abundant proteins: versatile players in the plant adaptation to water limiting environments. Plant Signal Behav 6(4):586–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poku SA, Seçgin Z, Kavas M (2019) Overexpression of Ks-type dehydrins gene OeSRC1 from Olea europaea increases salt and drought tolerance in tobacco plants. Mol Biol Rep 46(6):5745–5757

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Kumar D, Kumar S, Rampuria S, Reddy AR, Kirti PB (2016) Ectopic expression of an atypical hydrophobic group 5 LEA protein from wild peanut, Arachis diogoi confers abiotic stress tolerance in tobacco. PLoS ONE 11(3):e0150609

    Article  PubMed  PubMed Central  Google Scholar 

  • Shih MD, Hsieh TY, Lin TP, Hsing YC, Hoekstra FA (2010) Characterization of two soybean (Glycine max L.) LEA IV proteins by circular dichroism and fourier transform infrared spectrometry. Plant Cell Physiol 51(3):395–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivamani E, Bahieldin A, Wraithc JM, Al-Niemi T, Dyer WE, Ho TD, Qu R (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down regulation of miR398 and important for oxidative stress tolerance. Plant Cell 18(8):2051–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang MF, Xu C, Cao HH, Shi Y, Chen J, Chai Y, Li ZG (2021) Tomato calmodulin-like protein SlCML37 is a calcium (Ca2+) sensor that interacts with proteasome maturation factor SlUMP1 and plays a role in tomato fruit chilling stress tolerance. J Plant Physiol 258–259:153373

    Article  PubMed  Google Scholar 

  • Tao Y, Chen M, Shu YJ, Zhu YJ, Wang S, Huang LY, Yu XW, Wang ZK, Qian PP, Gu WH, Ma H (2018) Identification and functional characterization of a novel BEL1-LIKE homeobox transcription factor GmBLH4 in soybean. Plant Cell Tiss Org 134(2):331–344

    Article  CAS  Google Scholar 

  • Wang L, Ma H, Song L, Shu YJ, Gu WH (2012) Comparative proteomics analysis reveals the mechanism of pre-harvest seed deterioration of soybean under high temperature and humidity stress. J Proteomics 75(7):2109–2127

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Tao Y, Zhou Y, Niu J, Shu YJ, Yu XW, Liu SS, Chen M, Gu WH, Ma H (2017) Translationally controlled tumor protein GmTCTP interacts with GmCDPKSK5 in response to high temperature and humidity stress during soybean seed development. Plant Growth Reg 82(1):187–200

    Article  CAS  Google Scholar 

  • Wei JP, Liu XL, Li LZ, Zhao HH, Liu SS, Yu XW, Shen YZ, Zhou YL, Zhu YJ, Shu YJ, Ma H (2020) Quantitative proteomics analysis reveals effects of the high temperature and high humidity stress on seed vigor in soybean. BMC Plant Biol 20(1):127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu HX, Heath MC (1998) Role of calcium in signal transduction during the hypersensitive response caused by basidiospore-derived infection of the cowpea rust fungus. Plant Cell 10(4):585–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Wu HR (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110(1):249–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu ML, Tong Q, Wang Y, Wang ZM, Xu GZ, Elias GK, Li SH, Liang ZC (2020) Transcriptomic analysis of grapevine LEA gene family in response to osmotic and cold stress, and functional analyses of VamDHN3 gene. Plant Cell Physiol 61(4):775–786

    Article  CAS  PubMed  Google Scholar 

  • Zeng HQ, Xu LQ, Singh A, Wang H, Du L, Poovaiah BW (2015) Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. Front Plant Sci 6:600

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang JL, Li ZL (2021) TRPC4 ion channel regulations by small-molecular inhibitors and calmodulin. Cell Calcium 95:102361

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the partial financial support from the project supported by the National Natural Science Foundation of China (31671772, and 31971996) and the Ministry of Science and Technology of China (2018YFD0100905) for this research.

Funding

Funding was provided National Natural Science Foundation of China (Grant nos. 31671772, 31971996), Ministry of Science and Technology of the People's Republic of China (Grant no. 2018YFD0100905).

Author information

Authors and Affiliations

Authors

Contributions

The work presented here was carried out in collaboration among all the authors. YS carried out most of the laboratory experiments and prepared preliminary manuscript; JW, YZ, YJZ, SL, and YW carried out the seed germination and enzyme activities assay; HM designed the experiments and corrected the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Hao Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Zhong-Hua Chen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10725_2022_930_MOESM1_ESM.jpg

Supplementary file1 Supplemental Fig S1. Effects of HT, HH and HTH stresses on plants of single gene transformed Arabidopsis lines and WT plants. a, Illustration of 3-week-old WT and single gene transformed Arabidopsis lines (C3 and L6) under the control [23 °C/20 °C, 12 h/12 h (light/dark) and 70% RH], HT stress [40 °C/20 °C, 12 h/12 h (light/dark) and 70% RH], HH stress [23 °C/20 °C, 12 h/12 h (light/dark) and 100% RH] and HTH stress [40 °C/20 °C, 12 h/12 h (light/dark) and 100% RH] for 2 d, respectively. b, SOD activity, CAT activity, POD activity and MDA content in leaves of GmCaM1 transformed Arabidopsis lines (C1, C2 and C3), respectively; c, SOD activity, CAT activity, POD activity and MDA content in leaves of GmLEA4 transformed Arabidopsis lines (L4, L5 and L6), respectively; d, e, Staining of H2O2 in the leaves of transgenic Arabidopsis lines (C3 and L6) and WT plants under control, HT, HH and HTH stresses, respectively. Values shown are mean ± SD from three biological replicates (**p < 0.01). (JPG 409 kb)

Supplementary file2 (DOC 69 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Wei, J., Zhou, Y. et al. Soybean late embryogenesis abundant protein GmLEA4 interacts with GmCaM1, enhancing seed vigor in transgenic Arabidopsis under high temperature and humidity stress. Plant Growth Regul 99, 583–595 (2023). https://doi.org/10.1007/s10725-022-00930-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-022-00930-w

Keywords

Navigation