Skip to main content
Log in

Genome-wide analysis of invertase gene family in wheat (Triticum aestivum L.) indicates involvement of TaCWINVs in pollen development

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

A Correction to this article was published on 16 June 2022

This article has been updated

Abstract

Invertase (INV, EC3.2.1.26) is involved in carbohydrate partitioning by irreversibly hydrolyzing sucrose into fructose and glucose. INV genes that are specifically expressed in anthers are closely related to male fertility but they have not been identified in wheat. In this study, we identified 130 INV genes in wheat with uneven distributions on 21 chromosomes. According to their physical and chemical properties, subcellular locations, and phylogenetic analysis, the INV genes were divided into two acidic INV subtypes and two neutral/alkaline INV subtypes. Polyploidy and segmental duplications were found to be mainly responsible for expansion of the wheat INV gene family. Expression profiles in wheat showed that the INV genes had specific temporal and spatial characteristics. Subsequently, TaCWINV40 encoding a cell wall invertase (CWINV) was subjected to further study. Subcellular localization analysis showed that TaCWINV40 was localized in the cell wall. Further phenotypic and cytological analyses of BSMV:TaCWINV40 silenced wheat plants indicated that TaCWINV40 and/or its highly similar duplicates are involved in anther and pollen development. These findings are useful for improving our understanding of INV family members in wheat and they suggest important roles for TaCWINVs in male sterile wheat lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Change history

References

  • Bailey TL, Boden M, Buske FA, Frith MC, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME Suite: tools for motif discovery and searching. Nucleic Acids Res 37:202–208

    Article  CAS  Google Scholar 

  • Bate N, Twell D (1998) Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Biol 37:859–869

    Article  CAS  PubMed  Google Scholar 

  • Bocock PN, Morse AM, Dervinis C, Davis JM (2008) Evolution and diversity of invertase genes in Populus trichocarpa. Planta 227:565–576

    Article  CAS  PubMed  Google Scholar 

  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Gene Dev 17:1043–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou K, Shen H (2010) Plant-mPLoc: A top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE 5:e11335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chourey PS, Li QB, Cevallos-Cevallos J (2012) Pleiotropy and its dissection through a metabolic gene Miniature1 (Mn1) that encodes a cell wall invertase in developing seeds of maize. Plant Sci 184:45–53

    Article  CAS  PubMed  Google Scholar 

  • Clement C, Audran JC (1995) Anther wall layers control pollen sugar nutrition in. Lilium Protoplasma 187:172–181

    Article  CAS  Google Scholar 

  • Deng Y, Wang J, Zhang Z, Wu Y (2020) Transactivation of Sus1 and Sus2 by Opaque2 is an essential supplement to sucrose synthase-mediated endosperm filling in maize. Plant Biotechnol J 18:1897–1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorion S, Saini L (1996) Induction of male sterility in wheat by meiotic-stage water deficit is preceded by a decline in invertase activity and changes in carbohydrate metabolism in anthers. Plant Physiol 111:137–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD (2018) The Pfam protein families database in 2019. Nucleic Acids Res 47:D427–D432

    Article  PubMed Central  CAS  Google Scholar 

  • Ende WVD, Lammens W, Laere AV, Schroeven L, Roy KL (2009) Donor and acceptor substrate selectivity among plant glycoside hydrolase family 32 enzymes. FEBS J 276:5788–5798

    Article  PubMed  CAS  Google Scholar 

  • Freeling M (2009) Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol 60:433–453

    Article  CAS  PubMed  Google Scholar 

  • Gallagher JA, Cairns AJ, Pollock CJ (2004) Cloning and characterization of a putative fructosyltransferase and two putative invertase genes from the temperate grass Lolium temulentum L. J Exp Bot 55:557–569

    Article  CAS  PubMed  Google Scholar 

  • Goetz M, Guivarch A, Hirsche J, Bauerfeind MA, Gonzalez M, Hyun TK, Eom SH, Chriqui D, Engelke T, Groskinsky DK (2017) Metabolic control of tobacco pollination by sugars and invertases. Plant Physiol 173:984–997

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Jain R, Yang P, Fan R, Kwoh CK, Zheng J (2014) Reliable and fast estimation of recombination rates by convergence diagnosis and parallel markov chain monte carlo. IEEE/ACM Trans Comput Biol Bioinform 11:63–72

    Article  PubMed  Google Scholar 

  • Hanada K, Zou C, Lehtishiu MD, Shinozaki K, Shiu S (2008) Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli. Plant Physiol 148:993–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsche J, Engelke T, Voller D, Gotz M, Roitsch T (2009) Interspecies compatibility of the anther specific cell wall invertase promoters from Arabidopsis and tobacco for generating male sterile plants. Theor Appl Genet 118:235–245

    Article  CAS  PubMed  Google Scholar 

  • Ji X, Den Ende WV, Van Laere A, Cheng S, Bennett J (2005) Structure, evolution, and expression of the two invertase gene families of rice. J Mol Evol 60:615–634

    Article  CAS  PubMed  Google Scholar 

  • Juarez-Colunga S, Lopez-Gonzalez C, Morales-Elias NC, MassangeSanchez JA, Trachsel S, Tiessen A (2018) Genome-wide analysis of the invertase gene family from maize. Plant Mol Biol 97:385–406

    Article  CAS  PubMed  Google Scholar 

  • Kersey P, Allen JE, Allot A, Barba M, Boddu S, Bolt BJ, Carvalhosilva D, Christensen MB, Davis P, Grabmueller C (2018) Ensembl Genomes 2018: an integrated omics infrastructure for non-vertebrate species. Nucleic Acids Res 46:D802–D808

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Lee G, Chang M, Park J, Chung Y, Lee S, Lee T (2011) Purification and biochemical characterization of insoluble acid invertase (INAC-INV) from pea seedlings. J Agr Food Chem 59:11228–11233

    Article  CAS  Google Scholar 

  • Koonjul P, Minhas JS, Nunes C, Sheoran IS, Saini HS (2004) Selective transcriptional down-regulation of anther invertases precedes the failure of pollen development in water-stressed wheat. J Exp Bot 56:179–190

    PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lecharny A, Boudet N, Gy I, Aubourg S, Kreis M (2003) Introns in, introns out in plant gene families: a genomic approach of the dynamics of gene structure. J Struct Funct Genomics 3:111–116

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Sturm A (1996) Purification and characterization of neutral and alkaline invertase from carrot. Plant Physiol 112:1513–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao S, Wang L, Li J, Ruan YL (2020) Cell wall invertase is essential for ovule development through sugar signaling rather than provision of carbon nutrients. Plant Physiol 183:1126–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu ZH, Shi XY, Li S, Hu G, Zhang LL, Song XY (2018) Tapetal-delayed programmed cell death (PCD) and oxidative stress-induced male sterility of Aegilops uniaristata cytoplasm in wheat. Int J Mol Sci 19:1708

    Article  PubMed Central  CAS  Google Scholar 

  • Marchlerbauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, Deweesescott C, Fong JH, Geer LY, Geer RC, Gonzales NR (2011) CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39:225–229

    Article  CAS  Google Scholar 

  • Maruta T, Otori K, Tabuchi T, Tanabe N, Tamoi M, Shigeoka S (2010) New insights into the regulation of greening and carbon-nitrogen balance by sugar metabolism through a plastidic invertase. Plant Signal Behav 5:1131–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mascarenhas JP (1989) The male gametophyte of flowering plants. Plant Cell 1:657–664

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng L, Liu Z, Zhang L, Hu G, Song X (2016) Cytological characterization of a thermo-sensitive cytoplasmic male-sterile wheat line having K-type cytoplasm of Aegilops kotschyi. Breed Sci 66:752–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD, Chang HY, El-Gebali S, Fraser MI et al (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47:D351–D360

    Article  CAS  PubMed  Google Scholar 

  • Moore RC, Purugganan MD (2003) The early stages of duplicate gene evolution. P Natl Acad Sci USA 100:15682–15687

    Article  CAS  Google Scholar 

  • Oliver SN, Van Dongen JT, Alfred SC, Mamun EA, Zhao X, Saini HS, Fernandes SF, Blanchard C, Sutton BG, Geigenberger P (2005) Cold-induced repression of the rice anther-specific cell wall invertase gene OSINV4 is correlated with sucrose accumulation and pollen sterility. Plant Cell Environ 28:1534–1551

    Article  CAS  Google Scholar 

  • Pacini E, Franchi GG, Hesse M (1985) The tapetum: Its form, function, and possible phylogeny in Embryophyta. Plant Syst Evol 149:155–185

    Article  Google Scholar 

  • Park KC, Kwon SJ, Kim PH, Bureau T, Kim NS (2008) Gene structure dynamics and divergence of the polygalacturonase gene family of plants and fungus. Genome 51:30–40

    Article  CAS  PubMed  Google Scholar 

  • Qian W, Xiao B, Wang L, Hao X, Yue C, Cao H, Wang Y, Li N, Yu Y, Zeng J (2018) CsINV5, a tea vacuolar invertase gene enhances cold tolerance in transgenic Arabidopsis. BMC Plant Biol 18:228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers HJ, Bate N, Combe J, Sullivan J, Sweetman J, Swan C, Lonsdale DM, Twell D (2001) Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Mol Biol 45:577–585

    Article  CAS  PubMed  Google Scholar 

  • Rogozin I, Wolf Y, Sorokin A, Mirkin B, Koonin E (2003) Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr Biol 13:1512–1517

    Article  CAS  PubMed  Google Scholar 

  • Roitsch T, Gonzalez MC (2004) Function and regulation of plant invertases: sweet sensations. Trends Plant Sci 9:606–613

    Article  CAS  PubMed  Google Scholar 

  • Ruan Y, Jin Y, Yang Y, Li G, Boyer JS (2010) Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol Plant 3:942–955

    Article  CAS  PubMed  Google Scholar 

  • Shen LB, Qin YL, Qi ZQ, Niu Y, Liu ZJ, Liu WX (2019) Genome-wide analysis, expression profile, and characterization of the acid invertase gene family in pepper. Int J Mol Sci 20:15

    Article  CAS  Google Scholar 

  • Sturm A (1999) Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol 121:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su T, Han M, Min J, Chen P, Mao Y, Huang Q, Tong Q, Liu Q, Fang Y (2018) Genome-wide survey of invertase encoding genes and functional characterization of an extracellular fungal pathogen-responsive invertase in Glycine max. Int J Mol Sci 19:2395

    Article  PubMed Central  CAS  Google Scholar 

  • Tsuchiya T, Toriyama K, Yoshikawa M, Ejiri S, Hinata K (1995) Tapetum-specific expression of the gene for an endo-β-1,3-glucanase causes male sterility in transgenic tobacco. Plant Cell Physiol 36:487–494

    Article  CAS  PubMed  Google Scholar 

  • Vargas WA, Salerno GL (2010) The Cinderella story of sucrose hydrolysis: Alkaline/neutral invertases, from cyanobacteria to unforeseen roles in plant cytosol and organelles. Plant Sci 178:1–8

    Article  CAS  Google Scholar 

  • Verhaest M, Lammens W, Roy KL, De Coninck B, De Ranter CJ, Van Laere A, Den Ende WV, Rabijns A (2006) X-ray diffraction structure of a cell-wall invertase from Arabidopsis thaliana. Acta Crystallog D 62:1555–1563

    Article  CAS  Google Scholar 

  • Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H (2008) Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet 40:1370–1374

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zheng Y, Ding S, Zhang Q, Chen Y, Zhang J (2017) Molecular cloning, structure, phylogeny and expression analysis of the invertase gene family in sugarcane. BMC Plant Biol 17:109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H, Kissinger JC, Paterson AH (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:e49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang L, Le Roy K, Bolouri-Moghaddam MR, Vanhaecke M, Lammens W, Rolland F (2011) Exploring the neutral invertase-oxidative stress defence connection in Arabidopsis thaliana. J Exp Bot 62:3849–3862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Bu Y, Niu F, Cun Y, Zhang L, Song X (2022) Comprehensive analysis of LIM gene family in wheat reveals the involvement of TaLIM2 in pollen development. Plant Sci 314:111101

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Ye J, Niu F, Feng Y, Song X (2021) Identification and verification of genes related to pollen development and male sterility induced by high temperature in the thermo-sensitive genic male sterile wheat line. Planta 253:83

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Geng M, Wu X, Liu J, Li R, Hu X, Guo J (2015) Genome-wide identification, expression, and activity analysis of Alkaline/Neutral invertase gene family from Cassava (Manihot esculenta Crantz). Plant Mol Biol Rep 33:304–315

    Article  CAS  Google Scholar 

  • Ye J, Duan Y, Hu G, Geng X, Zhang G, Yan P, Liu Z, Zhang L, Song X (2017) Identification of candidate genes and biosynthesis pathways related to fertility conversion by wheat KTM3315A transcriptome profiling. Front Plant Sci 8:449

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi J, Moon S, Lee Y, Zhu L, Liang W, Zhang D, Jung K, An G (2016) Defective tapetum cell death 1 (DTC1) regulates ROS levels by binding to metallothionein during tapetum degeneration. Plant Physiol 170:1611–1623

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Ke T, Tehrim S, Sun F, Liao B, Hua W (2015) PTGBase: an integrated database to study tandem duplicated genes in plants. Database (Oxford) 2015:bav017

  • Zhang ZL, Xie Z, Zou X, Casaretto J, Ho TH, Shen QJ (2004) A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol 134:1500–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou T, Hao G, Yang Y, Liu H, Yang M, Zhao Y (2019) Sicwinv1, a cell wall invertase from sesame, is involved in anther development. J Plant Growth Regul 38:1274–1286

    Article  CAS  Google Scholar 

  • Ahiakpa JK, Magdy M, Karikari B, Munir S, Mumtaz MA, Tamim SA (2021) Genome-wide identification and expression profiling of tomato invertase genes indicate their response to stress and phytohormones. J Plant Growth Regul 40:1-18

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194-1202

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China [grant number 32072060].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Jiali Ye, Yaning Bu, Mengting He, Yongfeng Wu, and Xuetong Yang. The first draft of the manuscript was written by Jiali Ye and Yaning Bu, and all authors commented on subsequent versions of the manuscript. Xiyue Song and Lingli Zhang critically revised the manuscript. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Lingli Zhang or Xiyue Song.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Zsófia Bánfalvi.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: “The article title has been revised and the co-first author names have been added in the article note”.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Bu, Y., He, M. et al. Genome-wide analysis of invertase gene family in wheat (Triticum aestivum L.) indicates involvement of TaCWINVs in pollen development. Plant Growth Regul 98, 77–89 (2022). https://doi.org/10.1007/s10725-022-00834-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-022-00834-9

Keywords

Navigation