Skip to main content
Log in

Heterologous expression of the MiHAK14 homologue from Mangifera indica enhances plant tolerance to K+ deficiency and salinity stress in Arabidopsis

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

As one of the most abundant ions in cells, sufficient amount of potassium (K+) is closely related to plant growth and development and contributes to plant tolerance to various abiotic stresses. However, molecular mechanisms involved in K+ uptake and transport are unclear in tropical fruit trees. In this study, 18 KT/HAK/KUP family genes (MiHAKs) were isolated from mango and characterized in mango. Results showed that MiHAKs were variable across the tissues examined and responded differentially to K+ depletion, PEG, and NaCl stresses in roots. In this tissue, K+ depletion and exogenous PEG significantly enhanced, while NaCl treatment reduced expression of responsive MiHAK genes. In particular, MiHAK14 was the most abundant KT/HAK/KUP gene in mango, especially in roots. Functional complementation in the TK2420 mutant revealed that MiHAK14 could take up exogenous K+. Moreover, overexpression of MiHAK14 in Arabidopsis enhanced plant tolerance to K+ depletion and NaCl stress with strengthened K+ nutritional status and ROS scavenging ability. This study provides molecular basis for further functional studies of KT/HAK/KUP transporters in tropical fruit trees, and favorably demonstrates the essentiality of K+ homeostasis in plant tolerance to abiotic stress, including K+ deficiency and NaCl stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad P, Abdel Latef AA, Abd-Allah EF, Hashem A, Sarwat M, Anjum NA, Gucel S (2016) Calcium and potassium supplementation enhanced growth, osmolyte secondary metabolite production, and enzymatic antioxidant machinery in cadmium-exposed chickpea (Cicer arietinum L). Front Plant Sci 7:513

    PubMed  PubMed Central  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65(5):1241–1257

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Liu C, Gao Z, Zhang Y, Jiang H, Zhu L, Ren D, Yu L, Xu G, Qian Q (2017) OsHAK1, a high-affinity potassium transporter, positively regulates responses to drought stress in rice. Front Plant Sci 8:1885

    Article  PubMed  PubMed Central  Google Scholar 

  • Cherel I, Lefoulon C, Boeglin M, Sentenac H (2014) Molecular mechanisms involved in plant adaptation to low K(+) availability. J Exp Bot 65(3):833–848

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokoli A, Yurin V (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123:1468–1479

    Article  CAS  PubMed  Google Scholar 

  • Ellouzi H, Hamed KB, Cela J, Munné-Bosch S, Abdelly C (2011) Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiol Plantarum 142:128–143

    Article  CAS  Google Scholar 

  • Epstein E, Rains DW, Elzam OE (1963) Resolution of dual mechanisms of potassium absorption by barley roots. Proc Natl Acad Sci USA 49(5):684–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein W, Buurman ET, McLaggan D, Naprstek J (1993) Multiple mechanisms, roles and controls of K+ transport in Escherichia coli. Biochem Soc T 21:1006–1010

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Gao YC, Yu CY, Zhang K, Zhang HX, Zhang SY, Song ZZ (2021) Identification and characterization of the strawberry KT/HAK/KUP transporter gene family in response to K+ deficiency. Acta Physiol Plant 43(1):1–13

    Article  CAS  Google Scholar 

  • Gupta M, Qiu X, Wang L, Xie W, Zhang CJ, Xiong LZ, Lian XM, Zhang QF (2008) KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa). Mol Genet Genomics 280:437–452

    Article  CAS  PubMed  Google Scholar 

  • Hartz TK, Johnstone PR, Francis DM, Miyao EM (2005) Processing tomato yield and fruit quality improved with potassium fertigation. HortScience 40:1862–1867

    Article  Google Scholar 

  • He C, Cui K, Duan A, Zeng Y, Zhang J (2012) Genome-wide and molecular evolution analysis of the poplar KT/HAK/KUP potassium transporter gene family. Ecol Evol 2(8):1996–2004

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang S, Van Aken O, Schwarzländer M, Belt K, Millar AH (2016) The roles of mitochondrial reactive oxygen species in cellular signaling and stress response in plants. Plant Physiol 171(3):1551–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isayenkov SV, Maathuis F (2019) Plant salinity stress: many unanswered questions remain. Front Plant Sci 10:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Lebaudy A, Véry AA, Sentenac H (2007) K+ channel activity in plants: genes, regulations and functions. FEBS Lett 581:2357–2366

    Article  CAS  PubMed  Google Scholar 

  • Li M, Li Y, Li H, Wu G (2011) Overexpression of AtNHX5 improves tolerance to both salt and drought stress in Broussonetia papyrifera (L.) Vent. Tree Physiol 31:349–357

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Peng L, Xie C, Shi X, Dong C, Shen Q, Xu Y (2018) Genome-wide identification, characterization, and expression analyses of the HAK/KUP/KT potassium transporter gene family reveals their involvement in K+ deficient and abiotic stress responses in pear rootstock seedlings. Plant Growth Regul 85:187–198

    Article  CAS  Google Scholar 

  • Liang MX, Gao YC, Mao TT, Zhang XY, Zhang SY, Zhang HX, Song ZZ (2020) Characterization and expression of KT/HAK/KUP transporter family genes in willow under potassium deficiency, drought, and salt stresses. BioMed Res Int 2020:2690760

    PubMed  PubMed Central  Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2011) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  Google Scholar 

  • Mian A, Oomen RJ, Isayenkov S, Sentenac H, Maathuis FJ, Véry AA (2011) Over-expression of an Na+-and K+-permeable HKT transporter in barley improves salt tolerance. Plant J 68:468–479

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annual review of plant biology. Auun Rev Plant Biol 59(1):651–681

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ramarkers C, Ruijter JM, Lekanne Deprez RH, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  Google Scholar 

  • Sandalio LM, Romero-Puertas MC (2015) Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signalling networks. Ann Bot-London 116(4):475–485

    Article  CAS  Google Scholar 

  • Singh AK, Kumar R, Pareek A, Sopory SK, Singla-Pareek SL (2012) Overexpression of rice CBS domain containing protein improves salinity, oxidative, and heavy metal tolerance in transgenic tobacco. Mol Biotechnol 52:205–216

    Article  CAS  PubMed  Google Scholar 

  • Song ZZ, Su YH (2013) Distinctive potassium-accumulation capability of alligatorweed (Alternanther philoxeroides) links to high-affinity potassium transport facilitated by K+-uptake systems. Weed Sci 61:77–84

    Article  CAS  Google Scholar 

  • Song ZZ, Yang SY, Zuo J, Su YH (2014a) Over-expression of ApKUP3 enhances potassium nutrition and drought tolerance in transgenic rice. Bio Plantarum 58:649–658

    Article  CAS  Google Scholar 

  • Song ZZ, Yang SY, Zhu H, Jin M, Su YH (2014b) Heterologous expression of an alligatorweed high-affinity potassium transporter gene enhances salinity tolerance in Arabidopsis thaliana. Am J Bot 101:840–850

    Article  CAS  PubMed  Google Scholar 

  • Song ZZ, Duan CL, Guo SL, Feng YF, Ma RJ, Yu ML (2015a) Potassium contributes to zinc stress tolerance in peach (Prunus persica) seedlings by enhancing photosynthesis and the antioxidant defense system. Genet Mol Res 14:8338–8351

    Article  CAS  PubMed  Google Scholar 

  • Song ZZ, Guo SL, Zhang CH, Zhang BB, Ma RJ, Korir NK, Yu ML (2015b) KT/HAK/KUP potassium transporter genes differentially expressed during fruit devcelopment, ripening, and postharvest shelf-life of ‘Xiahui6’ peaches. Acta Physiol Plant 37(7):131

    Article  CAS  Google Scholar 

  • Song ZZ, Yang Y, Ma RJ, Yu ML (2015c) Transcription of potassium transporter genes of KT/HAK/KUP family in peach seedlings and responses to abiotic stresses. Bio Plantarum 59:65–73

    Article  CAS  Google Scholar 

  • Song ZZ, Ma RJ, Guo SL, Yu ML, Xu JL (2016) Expression and function analysis of potassium transporter gene PpeKUP5 in peach. Acta Horticulturae Sinica 43(2):218–226 ((in Chinese))

    CAS  Google Scholar 

  • Tharanathan RN, Yashoda HM, Prabha TN (2006) Mango (Mangifera indica L.), “the king of fruits”-an overview. Food Rev Int 22(2):95–123

    Article  CAS  Google Scholar 

  • Upadhyay A, Upadhyay AK, Bhirangi RA (2012) Expression of Na+/H+ antiporter gene in response to water and salinity stress in grapevine rootstocks. Biol Plantarum 56:762–766

    Article  CAS  Google Scholar 

  • van Zelm E, Zhang Y, Testerink C (2020) Salt tolerance mechanisms of plants. Annu Rev Plant Biol 71(1):403–433

    Article  PubMed  CAS  Google Scholar 

  • Véry AA, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 54:575–603

    Article  PubMed  Google Scholar 

  • Wang Y, Wu WH (2015) Genetic approaches for improvement of the crop potassium acquisition and utilization efficiency. Curr Opin Plant Biol 25:46–52

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Luo Y, Huang J, Gao S, Zhu G, Dang Z, Gai J, Yang M, Zhu M, Zhang H, Ye X, Gao A, Tan X, Wang S, Wu S, Cahoon EB, Bai B, Zhao Z, Li Q, Wei J, Chen H, Luo R, Gong D, Tang K, Zhang B, Ni Z, Huang G, Hu S, Chen Y (2020) The genome evolution and domestication of tropical fruit mango. Genome Biol 21:60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamasaki A, Yano T (2009) Effect of supplemental application of fertilizers on flower bud initiation and development of strawberry – possible role of nitrogen. Acta Hort 842:765–768

    Article  Google Scholar 

  • Zhang X, Zhang L, Chen Y, Wang S, Fang Y, Zhang X, Wu Y, Xue D (2021) Genome-wide identification of the SOD gene family and expression analysis under drought and salt stress in barley. Plant Growth Regul 94(1):49–60

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by grants from the National Key R&D Program of China (2019YFD1000500), the National Natural Science Foundations of China (31501743), and the Agricultural Variety Improvement Project of Shandong Province (2019LZGC009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhizhong Song.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Communicated by Luca Sebastiani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Shi, X., Lin, S. et al. Heterologous expression of the MiHAK14 homologue from Mangifera indica enhances plant tolerance to K+ deficiency and salinity stress in Arabidopsis. Plant Growth Regul 98, 39–49 (2022). https://doi.org/10.1007/s10725-022-00831-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-022-00831-y

Keywords

Navigation