Skip to main content
Log in

Heterologous expression of Chrysanthemum nankingense TCP13 suppresses leaf development in Arabidopsis thaliana

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

TCP genes encode plant-specific transcription factors in various species that they play important roles in plant growth and development. In the present study, we cloned the TCP transcription factor, TCP13, from Chrysanthemum nankingense (CnTCP13). CnTCP13 belongs to the class II CIN subfamily of the TCP family and harbors an atypical basic-helix-loop-helix motif, that was preferentially expressed in the leaf. CnTCP13 transcription was significantly inhibited 24 h after exogenous application of 6-BA. The CnTCP13 protein was localized in the nuclei of transformed onion epidermal cells and did not exhibit transcriptional activation. Heterologous expression of CnTCP13 in Arabidopsis thaliana reduced leaf size. qRT-PCR analysis revealed that the transcription levels of cell division-related genes were altered in transgenic A. thaliana containing CnTCP13. CnTCP2 and CnF-box were identified as putative interaction proteins of CnTCP13 by a yeast two-hybrid assay and bimolecular fluorescence complementation. CnF-box belongs to the F-box family and is abundantly expressed in roots. The CnF-box protein was localized in the nucleus and had no transcriptional activation. In A. thaliana, CnF-box overexpression led to strong crinkling of leaves. Taken together, CnTCP13 is involved in leaf development through the regulation of cell division-related genes, and likely by its interaction with CnTCP2 and CnF-box.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abd-Hamid NA, Ahmad-Fauzi MI, Zainal Z, Ismail I (2020) Diverse and dynamic roles of F-box proteins in plant biology. Planta 251:68

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal P, Padmanabhan B, Bhat A, Sarvepalli K, Sadhale PP, Nath U (2011) The TCP4 transcription factor of Arabidopsis blocks cell division in yeast at G1→S transition. Biochem Bioph Res Co 410:276–281

    Article  CAS  Google Scholar 

  • Aguilar-Martínez JA, Sinha N (2013) Analysis of the role of Arabidopsis class I emopenTCPemclose genes emopenAtTCP7emclose, emopenAtTCP8emclose, emopenAtTCP22emclose, and emopenAtTCP23emclose in leaf development. Front Plant Sci 4:406

    Article  PubMed  PubMed Central  Google Scholar 

  • Bar M, Ori N (2014) Leaf development and morphogenesis. Development 141:4219–4230

    Article  CAS  PubMed  Google Scholar 

  • Baute J, Polyn S, De Block J, Blomme J, Lijsebettens MV, Inze D (2017) F-Box protein FBX92 affects leaf size in Arabidopsis thaliana. Plant Cell Physiol 58:962–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bresso EG, Chorostecki U, Rodriguez RE, Palatnik JF, Schommer C (2017) Spatial control of gene expression by miR319-regulated TCP transcription factors in leaf development. Plant Physiol 176:1694–1708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Breuer C, Ishida T, Sugimoto K (2010) Developmental control of endocycles and cell growth in plants. Curr Opin Plant Biol 13:654–660

    Article  CAS  PubMed  Google Scholar 

  • Camoirano A, Arce AL, Ariel FD, Alem AL, Viola IL (2020) Class I TCP transcription factors regulate trichome branching and cuticle development in Arabidopsis. J Exp Bot 71:5438–5453

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Yang Y, Zhang H, Li D, Zheng Z, Song F (2008) Overexpression of a rice defense-related F-box protein gene OsDRF1 in tobacco improves disease resistance through potentiation of defense gene expression. Physiol Plantarum 134:440–452

    Article  CAS  Google Scholar 

  • Chen R, Guo W, Yin Y, Gong ZH (2014) A novel F-Box protein CaF-box is involved in responses to plant hormones and abiotic stress in pepper (Capsicum annuum L.). Int J Mol Sci 15:2413–2430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen XL, Zhou XY, Lin X, Li JX, Zhao RY, Nan M, Zhao LJ (2013) Roles of DgBRC1 in regulation of lateral branching in Chrysanthemum (Dendranthema ×grandifloracv. Jinba). PLoS ONE 8:e61717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Crawford BCW, Nath U, Carpenter R, Coen ES (2004) CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum. Plant Physiol 135:244–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cubas P, Lauter N, Doebley J, Coen E (1999) The TCP domain: a motif found in proteins regulating plant growth and development. Plant J 18:215–222

    Article  CAS  PubMed  Google Scholar 

  • Cui XH, Xu XF, He YY, Du XL, Zhu J (2016) Overexpression of an F-box protein gene disrupts cotyledon vein patterning in Arabidopsis. Plant Physiol Biochem 102:43–52

    Article  CAS  PubMed  Google Scholar 

  • Danisman S, van der Wal F, Dhondt S, Waites R, de Folter S, Bimbo A, van Dijk AD, Muino JM, Cutri L, Dornelas MC (2012) Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiol 159:1511–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daviere JM, Wild M, Regnault T, Baumberger N, Eisler H, Genschik P, Achard P (2014) Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height. Curr Biol 24:1923e1928

    Article  CAS  Google Scholar 

  • Del Pozo JC, Diaz-Trivino S, Cisneros N, Gutierrez C (2006) The balance between cell division and endoreplication depends on E2FC-DPB, transcription factors regulated by the ubiquitin-SCFSKP2A pathway in Arabidopsis. Plant Cell 18:2224–2235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jürgens G, Estelle M (2005) Plant development is regulated by a family of auxin receptor F box proteins. Develop Cell 9:109–119

    Article  CAS  Google Scholar 

  • Du JC, Hu SM, Yu Q, Wang CD, Yang YQ, Sun H, Yang YP, Sun XD (2017) Genome-wide identification and characterization of BrrTCP transcription factors in Brassica rapa ssp. rapa. Front Plant Sci 8:1588

    Article  PubMed  PubMed Central  Google Scholar 

  • Efroni I, Han SK, Kim HJ, Wu MF, Sang Y, Steiner E, Birnbaum KD, Hong JC, Eshed Y, Wagner D (2013) Regulation of leaf maturation by chromatin-mediated modulation of cytokinin responses. Dev Cell 24:438–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Es SWV, Silveira SR, Rocha DI, Bimbo A, Martinelli AP, Dornelas MC, Angenent GC, Immink RGH (2018) Novel functions of the Arabidopsis transcription factor TCP5 in petal development and ethylene biosynthesis. Plant J 94:867–879

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao CY, Li PL, Song AP, Wang HB, Wang YJ, Ren LP, Qi XY, Chen FD, Jiang JF, Chen SM (2015) Isolation and characterization of six AP2/ERF transcription factor genes in Chrysanthemum nankingense. Int J Mol Sci 16:2052–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez C (2009) The Arabidopsis cell division cycle. Arabidopsis Book 7:e0120

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang D, Li XW, Sun M, Zhang TX, Pan HT, Cheng TR, Wang J, Zhang QX (2016) Identification and characterization of CYC-like genes in regulation of ray floret development in Chrysanthemum morifolium. Front Plant Sci 7:1633

    PubMed  PubMed Central  Google Scholar 

  • Hur YS, Kim J, Kim S, Son O, Kim WY, Kim GT, Ohme-Takagi M, Cheon CI (2019) Identification of TCP13 as an upstream regulator of ATHB12 during leaf development. Genes 10:644

    Article  CAS  PubMed Central  Google Scholar 

  • Kalve S, De Vos D, Beemster GTS (2014) Leaf development: a cellular perspective. Front Plant Sci 5:362

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitsios G, Alexiou KG, Bush M, Shaw P, Doonan JH (2008) A cyclin-dependent protein kinase, CDKC2, colocalizes with and modulates the distribution of spliceosomal components in Arabidopsis. Plant J 54:220–235

    Article  CAS  PubMed  Google Scholar 

  • Koyama T, Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2010) TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. Plant Cell 22:3574–3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, Mcwilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lechner E, Achard P, Vansiri A, Potuschak T, Genschik P (2006) F-box proteins everywhere. Curr Opin Plant Biol 9:631–638

    Article  CAS  PubMed  Google Scholar 

  • Leene JV, Hollunder J, Eeckhout D, Persiau G, Slijke EVD, Stals H, Isterdael GV, Verkest A, Neirynck S, Buffel Y (2010) Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Mol Syst Biol 6:397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li PL, Song AP, Gao CY, Jiang JF, Chen SM, Fang WM, Zhang F, Chen FD (2015) The over-expression of a chrysanthemum WRKY transcription factor enhances aphid resistance. Plant Physiol Biochem 95:26–34

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Guan XY, Liu SN, Yang M, Ren JH, Guo M, Huang ZH, Zhang YW (2018) Genome-wide identification and analysis of TCP transcription factors involved in the formation of leafy head in Chinese cabbage. Int J Mol Sci 19:847

    Article  PubMed Central  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 –∆∆CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma XD, Ma JC, Fan D, Li CF, Jiang YZ, Luo KM (2016) Genome-wide identification of TCP family transcription factors from Populus euphratica and their involvement in leaf shape regulation. Sci Rep 6:32795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao YF, Wu FJ, Yu X, Bai JJ, Zhong WL, He YK (2014) microRNA319a-targeted Brassica rapa ssp. pekinensis TCP genes modulate head shape in Chinese Cabbage by differential cell division arrest in leaf regions. Plant Physiol 164:710–720

    Article  CAS  PubMed  Google Scholar 

  • Martín-Trillo M, Cubas P (2010) TCP genes: a family snapshot ten years later. Trends Plant Sci 15:31–39

    Article  PubMed  CAS  Google Scholar 

  • Masuda HP, Cabral LM, De Veylder L, Tanurdzic M, De Almeida Engler J, Geelen D, Inzé D, Martienssen RA, Ferreira PCG, Hemerly AS (2008) ABAP1 is a novel plant Armadillo BTB protein involved in DNA replication and transcription. EMBO J 27:2746–2756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizukami Y (2001) A matter of size: developmental control of organ size in plants. Curr Opin Plant Biol 4:533–539

    Article  CAS  PubMed  Google Scholar 

  • Nakai T, Kato K, Shinmyo A, Sekine M (2006) Arabidopsis KRPs have distinct inhibitory activity toward cyclin D2-associated kinases, including plant-specific B-type cyclin-dependent kinase. FEBS Lett 580:336–340

    Article  CAS  PubMed  Google Scholar 

  • Nath U, Crawford BC, Carpenter R, Coen E (2003) Genetic control of surface curvature. Science 299:1404–1407

    Article  CAS  PubMed  Google Scholar 

  • Navaud O, Dabos P, Carnus E, Tremousaygue D, Herve C (2007) TCP transcription factors predate the emergence of land plants. J Mol Evol 65:23–33

    Article  CAS  PubMed  Google Scholar 

  • Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I (2007) Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet 39:787–791

    Article  CAS  PubMed  Google Scholar 

  • Pruneda-Paz JL, Breton G, Para A, Kay SA (2009) A functional genomics approach reveals CHE as a novel component of the Arabidopsis circadian clock. Science 323:1481–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi XY, Qu YX, Gao R, Jiang JF, Fang WM, Guan ZY, Zhang F, Zhao S, Chen SM, Chen FD, Wang HB (2019) The heterologous expression of a Chrysanthemum nankingense TCP transcription factor blocks cell division in yeast and Arabidopsis thaliana. Int J Mol Sci 20:4848

    Article  CAS  PubMed Central  Google Scholar 

  • Rodriguez RE, Mecchia MA, Debernardi JM, Schommer C, Weigel D, Palatnik JF (2010) Control of cell proliferation in Arabidopsis thalianaby microRNA miR396. Development 137:103–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarvepalli K, Nath U (2011) Hyper-activation of the TCP4 transcription factor in Arabidopsisthaliana accelerates multiple aspects of plant maturation. Plant J 67:595–607

    Article  CAS  PubMed  Google Scholar 

  • Schommer C, Debernardi JM, Bresso EG, Rodriguez RE, Palatnik JF (2014) Repression of cell proliferation by miR319-regulated TCP4. Mol Plant 7:1533–1544

    Article  CAS  PubMed  Google Scholar 

  • Song AP, Lou WH, Jiang JF, Chen SM, Sun ZX, Guan ZY, Fang WM, Teng NJ, Chen FD (2013) An isoform of eukaryotic initiation factor 4E from Chrysanthemummorifolium interacts with Chrysanthemum Virus B coat protein. PLoS ONE 8:e57229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song AP, Wang LX, Chen SM, Jiang JF, Guan ZY, Li PL, Chen FD (2015) Identification of nitrogen starvation-responsive microRNAs in Chrysanthemum nankingense. Plant Physiol Biochem 91:41–48

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular evolutionary genetics analysis Version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trémousaygue D, Garnier L, Bardet C, Dabos P, Hervé C, Lescure B (2003) Internal telomeric repeats and ‘TCP domain’ protein-binding sites co-operate to regulate gene expression in Arabidopsis thaliana cycling cells. Plant J 33:957–966

    Article  PubMed  Google Scholar 

  • Viola IL, Uberti Manassero NG, Ripoll R, Gonzalez DH (2011) The Arabidopsis class I TCP transcription factor AtTCP11 is a developmental regulator with distinct DNA-binding properties due to the presence of a threonine residue at position 15 of the TCP domain. Biochem J 435:143–155

    Article  CAS  PubMed  Google Scholar 

  • Wang CQ, Guthrie C, Sarmast MK, Dehesh K (2014) BBX19 interacts with CONSTANS to repress FLOWERING LOCUS T transcription, defining a flowering time checkpoint in Arabidopsis. Plant Cell 26:3589–3602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HB, Jiang JF, Chen SM, Qi XY, Peng H, Li PR, Song AP, Guan ZY, Fang WM, Liao Y, Chen FD (2013) Next-generation sequencing of the Chrysanthemum nankingense (Asteraceae) transcriptome permits large-scale unigene assembly and SSR marker discovery. PLoS ONE 8:e62293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HF, Wang HW, Liu R, Xu YT, Lu ZC, Zhou CE (2018) Genome-wide identification of TCP family transcription factors in Medicago truncatula reveals significant roles of miR319-targeted TCPs in nodule development. Front Plant Sci 9:774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JJ, Wang HB, Ding L, Song AP, Shen F, Jiang JF, Chen SM, Chen FD (2017) Transcriptomic and hormone analyses reveal mechanisms underlying petal elongation in Chrysanthemummorifolium ‘Jinba’. Plant Mol Biol 93:593–606

    Article  CAS  PubMed  Google Scholar 

  • Wang ZB, Li N, Jiang S, Gonzalez N, Huang XH, Wang YC, Inze D, Li YH (2016) SCFSAP controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana. Nat Commun 7:11192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Qu YX, Wang HB, Wang JJ, Song AP, Hu YH, Chen SM, Jiang JF, Chen FD (2017) The heterologous expression of a chrysanthemum TCP-P transcription factor CmTCP14 suppresses organ size and delays senescence in Arabidopsis thaliana. Plant Physiol Biochem 115:239–248

    Article  CAS  PubMed  Google Scholar 

  • Zhao LN, Li YQ, Xie Q, Wu YR (2017) Loss of CDKC;2 increases both cell division and drought tolerance in Arabidopsis thaliana. Plant J 91:816–828

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program of China (2018YFD1000401), the National Natural Science Foundation of China (31,872,149), the Natural Science Fund of Qinghai Province, China (2018-HZ-819), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

XYQ, HBW and FDC designed the experiment. XYQ, YXQ, APS and PPC performed the experiment. XYQ, ZYG and WMF analyzed the data and wrote the manuscript. XYQ, JFJ, YXG and SMC revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Haibin Wang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Communicated by Paul Holford.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Fig. S1. PCR-based identification of interaction proteins of CnTCP13. Supplementary material 1 (TIF 1585.6 kb)

10725_2021_743_MOESM2_ESM.tif

Fig. S2. Characterization of the CnF-box. (a) Amino-acid comparison of CnF-box and F-box homologues from other species. (b) Phylogenetic relationship of CnF-box and other F-box family proteins. The bar (0.02) indicated branch length. The GenBank accession numbers of the amino acid sequences used were: HaF-box (Helianthus annuus, XP_022020705.1), CcF-box (Cynara cardunculus var. Scolymus, KVH89818.1), SiSKIP31(Sesamum indicum, XP_011082189.1), HuSKIP31(Herrania umbratica, XP_021273565.1), NnSKIP31-like (Nelumbo nucifera, XP_010275142.1), MnSKIP31 (Morus notabilis, XP_010111779.1), McSKIP31(Momordica charantia, XP_022140264.1), PpSKIP31 (Prunus persica, XP_007222722.1), PaSKIP31(Prunus avium, XP_021810235.1), CfSKIP31(Cephalotus follicularis, GAV80251.1), GmSKIP31-like (Glycine max, XP_003517102.1), MtSKIP31(Medicago truncatula, XP_003612486.1), AiSKIP31(Arachis ipaensis, XP_016201304.1), AdSKIP31(Arachis duranensis, XP_015963458.1), CqSKIP31(Chenopodium quinoa, XP_021744740.1), SoSKIP31(Spinacia oleracea, XP_021848668.1), HbSKIP31(Hevea brasiliensis, XP_021685246.1), JcSKIP31(Jatropha curcas, XP_012079765.1). Supplementary material 2 (TIF 3352.0 kb)

10725_2021_743_MOESM3_ESM.tif

Fig. S3. Differential expression patterns of CnF-box in various tissues of C. nankingense. Supplementary material 3 (TIF 1100.8 kb)

10725_2021_743_MOESM4_ESM.tif

Fig. S4. Subcellular localization of the CnF-box protein in onion epidermal cells and the transcriptional activation of CnF-box. (a) GFP activity generated by the p35S::GFP-CnCnF-box transgene introduced into onion epidermal peels. Fluorescence: images obtained in the green fluorescence channel; DIC: images obtained in bright light; Merge: overlay plots. Bar: 50 μm. (b) Yeast one-hybrid assay was used to detect transcriptional activation of CnF-box.. Supplementary material 4 (TIF 3504.1 kb)

Table S1. Primer sequences used in this study. Supplementary material 5 (DOCX 22.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, X., Qu, Y., Jiang, J. et al. Heterologous expression of Chrysanthemum nankingense TCP13 suppresses leaf development in Arabidopsis thaliana. Plant Growth Regul 95, 331–341 (2021). https://doi.org/10.1007/s10725-021-00743-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-021-00743-3

Keywords

Navigation