Skip to main content

Advertisement

Log in

Genome-wide identification and validation of optimal reference genes for gene expression normalization in pear peel

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) is the preferred method for gene expression research, but normalization based on suitable reference genes (RGs) is the key to obtaining reliable gene expression results. In this study, we selected six “commonly used” RGs, two “traditional” housekeeping genes (HKGs), and four novel genes as candidate RGs based on 54 publicly available peel transcriptome libraries that include data from development, bagging, and post-harvest cryopreservation studies of four pear cultivars. The results of this multifaceted assessment from transcriptome and qRT-PCR analyses consistently revealed that ACT6/7/8/9 had the best expression stability among all candidate RGs, and expression of the novel RGs showed greater stability compared with the other “commonly used” RGs and “traditional” HKGs. Among the candidate RGs, ACT6/7/8/9 and Nucleosome Assembly Protein 1 (NAP1) showed superior expression stability and abundance, and they were recommended as the optimal RG combination for gene expression normalization in pear peel. These genome-wide findings provide more reasonable RG usage specifications, and additional useful and reliable RGs as resources for accurate study of gene expression in pear peel studies of different cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Genomic and publicly available annotated protein databases for pear (P. bretschneideri) were downloaded from the pear genome project (https://peargenome.njau.edu.cn/). The Arabidopsis data were downloaded from the Arabidopsis Information Resource (https://www.arabidopsis.org/). The gene identity information is listed in the supplemental material (Table S2).

References

  • Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  CAS  PubMed  Google Scholar 

  • Bayer EM, Bottrill AR, Walshaw J, Vigouroux M, Naldrett MJ, Thomas CL, Maule AJ (2006) Arabidopsis cell wall proteome defined using multidimensional protein identification technology. Proteomics 6:301–311

    Article  CAS  PubMed  Google Scholar 

  • Bustin SA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  • Chen J et al (2015) Identification and testing of reference genes for gene expression analysis in pollen of Pyrus bretschneideri. Sci Hortic 190:43–56

    Article  CAS  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W-R (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai M, Shi Z, Xu C (2015) Genome-wide analysis of sorbitol dehydrogenase (SDH) genes and their differential expression in two sand pear (Pyrus pyrifolia) fruits. Int J Mol Sci 16:13065–13083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dekkers BJ, Willems L, Bassel GW, van Bolderen-Veldkamp R, Ligterink W, Hilhorst HW, Bentsink L (2012) Identification of reference genes for RT–qPCR expression analysis in Arabidopsis and tomato seeds. Plant Cell Physiol 53:28–37

    Article  CAS  PubMed  Google Scholar 

  • Drøbak B, Franklin-Tong V, Staiger C (2004) The role of the actin cytoskeleton in plant cell signaling. New Phytol 163:13–30

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, He W, Wang L, Wei Y (2015) Selection of appropriate reference genes for quantitative real-time PCR in Oxytropis ochrocephala Bunge using transcriptome datasets under abiotic stress treatments. Front Plant Sci 6:475

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao J, Zhu Y, Zhou W, Molinier J, Dong A, Shen W-H (2012) NAP1 family histone chaperones are required for somatic homologous recombination in Arabidopsis. Plant Cell 24:1437–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X, Wei Y, Kou J, Xu F, Chen Z, Shao X (2018) PpVIN2, an acid invertase gene family member, is sensitive to chilling temperature and affects sucrose metabolism in postharvest peach fruit. Plant Growth Regul 86:169–180

    Article  CAS  Google Scholar 

  • Heng W et al (2018) Characterization and expression analysis of PbEXP genes in the epidermis of pear (Pyrus bretschneideri Rehd.). Plant Growth Regul 84:1–9

    Article  CAS  Google Scholar 

  • Hiwasa K, Rose JK, Nakano R, Inaba A, Kubo Y (2003) Differential expression of seven α-expansin genes during growth and ripening of pear fruit. Physiol Plant 117:564–572

    Article  CAS  PubMed  Google Scholar 

  • Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immunol 6:279–284

    Article  CAS  Google Scholar 

  • Jin X, Fu J, Dai S, Sun Y, Hong Y (2013) Reference gene selection for qPCR analysis in cineraria developing flowers. Sci Hortic 153:64–70

    Article  CAS  Google Scholar 

  • Jung HJ, Park SJ, Kang H (2013) Regulation of RNA metabolism in plant development and stress responses. J Plant Biol 56:123–129

    Article  CAS  Google Scholar 

  • Kang YW, Kim RN, Cho HS, Kim WT, Choi D, Pai H-S (2008) Silencing of a BYPASS1 homolog results in root-independent pleiotrophic developmental defects in Nicotiana benthamiana. Plant Mol Biol 68:423–437

    Article  CAS  PubMed  Google Scholar 

  • Krzeszowiec W, Rajwa B, Dobrucki J, Gabryś H (2007) Actin cytoskeleton in Arabidopsis thaliana under blue and red light. Biol Cell 99:251–260

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwak KJ, Kim YO, Kang H (2005) Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress. J Exp Bot 56:3007–3016

    Article  CAS  PubMed  Google Scholar 

  • Kwon SJ, Choi EY, Choi YJ, Ahn JH, Park OK (2006) Proteomics studies of post-translational modifications in plants. J Exp Bot 57:1547–1551

    Article  CAS  PubMed  Google Scholar 

  • Lankenau S, Barnickel T, Marhold J, Lyko F, Mechler BM, Lankenau D-H (2003) Knockout targeting of the Drosophila Nap1 gene and examination of DNA repair tracts in the recombination products. Genetics 163:611–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q-F, Sun SS, Yuan D-Y, Yu H-X, Gu M-H, Liu Q-Q (2010) Validation of candidate reference genes for the accurate normalization of real-time quantitative RT-PCR data in rice during seed development. Plant Mol Biol Rep 28:49–57

    Article  CAS  Google Scholar 

  • Liu Z, Zhu Y, Gao J, Yu F, Dong A, Shen WH (2009) Molecular and reverse genetic characterization of NUCLEOSOME ASSEMBLY PROTEIN1 (NAP1) genes unravels their function in transcription and nucleotide excision repair in Arabidopsis thaliana. Plant J 59:27–38

    Article  CAS  PubMed  Google Scholar 

  • Liu P et al (2013) Molecular analysis of the processes of surface brown spot (SBS) formation in pear fruit (Pyrus bretschneideri Rehd. Cv. Dangshansuli) by de novo transcriptome assembly. PLoS ONE 8:e74217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Wang L, Wang S, Li W, Liu D, Guo X, Qu B (2019) Transcriptomic analysis of bagging-treated ‘Pingguo’pear shows that MYB4-like1, MYB4-like2, MYB1R1 and WDR involved in anthocyanin biosynthesis are up-regulated in fruit peels in response to light. Sci Hortic 244:428–434

    Article  CAS  Google Scholar 

  • Long X-Y et al (2010) Genome-wide identification and evaluation of novel internal control genes for Q-PCR based transcript normalization in wheat. Plant Mol Biol 74:307–311

    Article  CAS  PubMed  Google Scholar 

  • Meagher RB, McKinney EC, Kandasamy M (1999) Isovariant dynamics expand and buffer the responses of complex systems: the diverse plant actin gene family. Plant Cell 11:995–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller OA, Grau J, Thieme S, Prochaska H, Adlung N, Sorgatz A, Bonas U (2015) Genome-wide identification and validation of reference genes in infected tomato leaves for quantitative RT-PCR analyses. PLoS ONE 10:e0136499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nham NT et al (2015) A transcriptome approach towards understanding the development of ripening capacity in ‘Bartlett’pears (Pyrus communis L.). BMC Genomics 16:762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nham NT, Macnish AJ, Zakharov F, Mitcham EJ (2017) ‘Bartlett’pear fruit (Pyrus communis L.) ripening regulation by low temperatures involves genes associated with jasmonic acid, cold response, and transcription factors. Plant Sci 260:8–18

    Article  CAS  PubMed  Google Scholar 

  • Ni J, Bai S, Gao L, Qian M, Zhong L, Teng Y (2017) Identification, classification, and transcription profiles of the B-type response regulator family in pear. PLoS ONE 12:e0171523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park Y-J, Luger K (2006) Structure and function of nucleosome assembly proteins. Biochem Cell Biol 84:549–549

    Article  CAS  PubMed  Google Scholar 

  • Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL (2016) Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and ballgown. Nat Protoc 11:1650–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW (2004) Quantification strategies in real-time PCR. AZ Quant PCR 1:89–113

    Google Scholar 

  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  PubMed  Google Scholar 

  • Pierantoni L, Dondini L, De Franceschi P, Musacchi S, Winkel BS, Sansavini S (2010) Mapping of an anthocyanin-regulating MYB transcription factor and its expression in red and green pear, Pyrus communis. Plant Physiol Biochem 48:1020–1026

    Article  CAS  PubMed  Google Scholar 

  • Pihur V, Datta S, Datta S (2009) RankAggreg, an R package for weighted rank aggregation. BMC Bioinf 10:62

    Article  Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RHL, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  CAS  PubMed  Google Scholar 

  • Sieburth LE, Lee DK (2010) BYPASS1: How a tiny mutant tells a big story about root-to-shoot signaling. J Integr Plant Biol 52:77–85

    Article  CAS  PubMed  Google Scholar 

  • Silverman IM, Li F, Gregory BD (2013) Genomic era analyses of RNA secondary structure and RNA-binding proteins reveal their significance to post-transcriptional regulation in plants. Plant Sci 205:55–62

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Higgins DG (2003) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinf 1:1–22

    Google Scholar 

  • Tripurani SK, Nakaminami K, Thompson KB, Crowell SV, Guy CL, Karlson DT (2011) Spatial and temporal expression of cold-responsive DEAD-box RNA helicases reveals their functional roles during embryogenesis in Arabidopsis thaliana. Plant Mol Biol Rep 29:761–768

    Article  CAS  Google Scholar 

  • Van Norman JM, Sieburth LE (2007) Dissecting the biosynthetic pathway for the bypass1 root-derived signal. Plant J 49:619–628

    Article  PubMed  CAS  Google Scholar 

  • Van Norman JM, Frederick RL, Sieburth LE (2004) BYPASS1 negatively regulates a root-derived signal that controls plant architecture. Curr Biol 14:1739–1746

    Article  PubMed  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(research0034):0031

    Google Scholar 

  • Vembar SS, Macpherson CR, Sismeiro O, Coppée J-Y, Scherf A (2015) The PfAlba1 RNA-binding protein is an important regulator of translational timing in Plasmodium falciparum blood stages. Genome Biol 16:212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vierstra RD (2009) The ubiquitin–26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10:385–397

    Article  CAS  PubMed  Google Scholar 

  • Wan H et al (2011) Identification of reference genes for reverse transcription quantitative real-time PCR normalization in pepper (Capsicum annuum L.). Biochem Biophys Res Commun 416:24–30

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang W-Z, Song L-F, Zou J-J, Su Z, Wu W-H (2008) Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol 148:1201–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Meng D, Wang A, Li T, Jiang S, Cong P, Li T (2013) The methylation of the PcMYB10 promoter is associated with green-skinned sport in Max Red Bartlett pear. Plant Physiol 162:885–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R et al (2017a) Genome-wide identification of the MADS-box transcription factor family in pear (Pyrus bretschneideri) reveals evolution and functional divergence. Peer Journal 5:e3776

    Article  CAS  Google Scholar 

  • Wang Y, Zhang X, Wang R, Bai Y, Liu C, Yuan Y, Yang Y, Yang S (2017b) Differential gene expression analysis of ‘Chili’(Pyrus bretschneideri) fruit pericarp with two types of bagging treatments. Hortic Res 4:17005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Z, Du H, Zhai R, Song L, Ma F, Xu L (2017c) Transcriptome analysis reveals candidate genes related to color fading of ‘Red Bartlett’(Pyrus communis L.). Front Plant Sci 8:455

    PubMed  PubMed Central  Google Scholar 

  • Wen R et al (2014) UBC 13, an E2 enzyme for L ys63-linked ubiquitination, functions in root development by affecting auxin signaling and Aux/IAA protein stability. Plant J 80:424–436

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm BT, Landry J-R (2009) RNA-Seq—quantitative measurement of expression through massively parallel RNA-sequencing. Methods 48:249–257

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Zhang R, Gu C, Wu J, Wan H, Zhang S, Zhang S (2012) Evaluation of candidate reference genes for real time quantitative PCR normalization in pear fruit. Afr J Agric Res 7:3701–3704

    Google Scholar 

  • Wu J et al (2013a) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J et al (2013b) Identification of differentially expressed genes related to coloration in red/green mutant pear (Pyrus communis L.). Tree Genet Genomes 9:75–83

    Article  Google Scholar 

  • Wu J et al (2018) Diversification and independent domestication of Asian and European pears. Genome Biol 19:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie F, Xiao P, Chen D, Xu L, Zhang B (2012) miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol 80:75–84

    Article  CAS  Google Scholar 

  • Xu L, Ménard R, Berr A, Fuchs J, Cognat V, Meyer D, Shen WH (2009) The E2 ubiquitin-conjugating enzymes, AtUBC1 and AtUBC2, play redundant roles and are involved in activation of FLC expression and repression of flowering in Arabidopsis thaliana. Plant J 57:279–288

    Article  CAS  PubMed  Google Scholar 

  • Xue C et al (2019) PbrMYB169 positively regulates lignification of stone cells in pear fruit. J Exp Bot 70:1801–1814

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Yao G, Yue W, Zhang S, Wu J (2015) Transcriptome profiling reveals differential gene expression in proanthocyanidin biosynthesis associated with red/green skin color mutant of pear (Pyrus communis L.). FrontPlant Sci 6:795

    Google Scholar 

  • Ye Y, Rape M (2009) Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 10:755–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Yu B, Bai J, Qian M, Shu Q, Su J, Teng Y (2012) Effects of high temperatures on UV-B/visible irradiation induced postharvest anthocyanin accumulation in ‘Yunhongli No. 1’(Pyrus pyrifolia Nakai) pears. Sci Hortic 134:53–59

    Article  CAS  Google Scholar 

  • Zhu Y, Dong A, Meyer D, Pichon O, Renou J-P, Cao K, Shen W-H (2006) Arabidopsis NRP1 and NRP2 encode histone chaperones and are required for maintaining postembryonic root growth. Plant Cell 18:2879–2892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Fujian Province, China (2018J01702); the National Natural Science Foundation of China (31801814); the Fundamental Research Funds for the Fujian Universities (JK2017017); and the Central Government Guides Local Science and Technology Development Projects (2017L3001). We thank Mallory Eckstut, PhD, from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

CJQ, CQX, and CCM conceived and designed the experiments, analyzed the data, and wrote the manuscript; CCM, WTY, and CZM performed the experiments; XGF and CZY contributed plant materials; YYF and WW contributed analytical tools; XQ and GXY helped analyze data; CJQ revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Qingxi Chen or Jianqing Chen.

Ethics declarations

Conflict of interest

All authors of this manuscript declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Wang, T., Cai, Z. et al. Genome-wide identification and validation of optimal reference genes for gene expression normalization in pear peel. Plant Growth Regul 92, 249–261 (2020). https://doi.org/10.1007/s10725-020-00634-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-020-00634-z

Keywords

Navigation