Skip to main content
Log in

Nitric oxide and hydrogen sulfide: two intimate collaborators regulating plant defense against abiotic stress

  • Review paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

In the era of climate change, plants are continuously exposed to various abiotic stresses like extreme temperature, water scarcity, flooding, salinity, toxic metals/metalloids, and atmospheric pollutants. Physiological disorders, enzymes inactivation as well as altering the cellular redox homeostasis are attributed to these stressors, limiting plant survival, as well as crop yield loss. Considering the potential threat from these adverse situations, plant biologists are searching for new aids to combat crop loss and plant survival. Contrary, plants also have developed many adaptive features, and defense mechanisms, among which the synthesis of signaling molecules such as gasotransmitters—nitric oxide (NO) and hydrogen sulfide (H2S), are very important. These signaling molecules play vital roles in enhancing antioxidant defense and synergistic interactions with phytohormones and other protective molecules, are considered as the most promising and effective against abiotic stresses. In recent years, numerous pieces of evidence showed the endogenous concentration of both of these gasotransmitters can regulate each other as well as specific defense-related entities, especially within the antioxidative mechanisms. Moreover, NO and H2S donors have also been tested exogenously on different plant species, and both of them showed promising protection against adverse conditions. Although a significant advancement in exploring the molecular basis of such protections has been made recently, still a lot is to find out. Therefore, in this review, we have illustrated a panorama of the intimate relationship between these two signaling molecules, conferring abiotic stress tolerance in plants based on available literature. Moreover, we will try to give an indication of the research gaps and future research prospects in this specific ground.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad P, Ahanger MA, Alyemeni MN, Wijaya L, Alam P (2018) Exogenous application of nitric oxide modulates osmolyte metabolism, antioxidants, enzymes of ascorbate-glutathione cycle and promotes growth under cadmium stress in tomato. Protoplasma 255(1):79–93

    PubMed  CAS  Google Scholar 

  • Ahmad R, Ali S, Rizwan M, Dawood M, Farid M, Hussain A, Wijaya L, Alyemeni MN, Ahmad P (2019) Hydrogen sulfide alleviates chromium stress on cauliflower by restricting its uptake and enhancing antioxidative system. Physiol Plant. https://doi.org/10.1111/ppl.13001

    Article  PubMed  Google Scholar 

  • Akter S, Huang J, Waszczak C, Jacques S, Gevaert K, Van Breusegem F, Messens J (2015) Cysteines under ROS attack in plants: a proteomics view. J Exp Bot 66:2935–2944

    PubMed  CAS  Google Scholar 

  • Aroca Á, Serna A, Gotor C, Luis CR (2015) S-sulfhydration: a new post-translational modification in plant systems. Plant Physiol 168:334–342

    PubMed  PubMed Central  CAS  Google Scholar 

  • Aroca A, Gotor C, Romero LC (2018) Hydrogen sulfide signaling in plants: emerging roles of protein persulfidation. Front Plant Sci 9:1369. https://doi.org/10.3389/fpls.2018.01369

    Article  PubMed  PubMed Central  Google Scholar 

  • Asgher M, Per TS, Masood A, Fatma M, Freschi L, Corpas FJ, Khan NA (2017) Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress. Environ Sci Pollut Res Int 24:2273–2285

    PubMed  CAS  Google Scholar 

  • Astier J, Loake G, Velikova V, Gaupels F (2016) Editorial: Interplay between NO signaling, ROS, and the antioxidant system in plants. Front Plant Sci 7:1731. https://doi.org/10.3389/fpls.2016.01731

    Article  PubMed  PubMed Central  Google Scholar 

  • Atkins KC, Cross F (2018) Inter-regulation of CDKA/CDK1 and the plant-specific cyclin-dependent kinase CDKB in control of the Chlamydomonas cell cycle. Plant Cell 30:429–446

    PubMed  PubMed Central  CAS  Google Scholar 

  • Banerjee A, Tripathi DK, Roychoudhury A (2018) Hydrogen sulphide trapeze: environmental stress amelioration and phytohormone crosstalk. Plant Physiol Biochem 132:46–53

    PubMed  CAS  Google Scholar 

  • Batista PF, Costa AC, Müller C, de Oliveira S-F, da Silva FB, Merchant A, Mendes GC, Nascimento KJT (2018) Nitric oxide mitigates the effect of water deficit in Crambe abyssinica. Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2018.06.012

    Article  PubMed  Google Scholar 

  • Begara-Morales JC, Sánchez-Calvo B, Luque F, Leyva-Perez MO, Leterrier M, Corpas FJ, Barroso JB (2014) Differential transcriptomic analysis by RNA-Seq of GSNO-responsive genes between Arabidopsis roots and leaves. Plant Cell Physiol 55:1080–1095

    PubMed  CAS  Google Scholar 

  • Camelo-Castillo A, Novoa L, Balsa-Castro C, Blanco J, Mira A, Tomás I (2015) Relationship between periodontitis-associated subgingival microbiota and clinical inflammation by 16S pyrosequencing. J Clin Periodontol 42:1074–1082

    PubMed  CAS  Google Scholar 

  • Cao X, Zhu C, Zhong C, Zhang J, Wu L, Jin Q, Ma Q (2019) Nitric oxide synthase-mediated early nitric oxide burst alleviates water stress-induced oxidative damage in ammonium-supplied rice roots. BMC Plant Biol 19:108. https://doi.org/10.1186/s12870-019-1721-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Cassia R, Amenta M, Fernández MB, Nocioni M, Dávila V (2019) The role of nitric oxide in the antioxidant defense of plants exposed to UV-B radiation. In: Hasanuzzaman M, Fotopoulos V, Nahar K, Fujita M (eds) Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms, vol 22. Wiley, West Sussex, pp 555–572

    Google Scholar 

  • Chamizo-Ampudia A, Sanz-Luque E, Llamas A, Galvan A, Fernandez E (2017) Nitrate reductase regulates plant nitric oxide homeostasis. Trends Plant Sci 22:163–174

    PubMed  CAS  Google Scholar 

  • Chen J, Wang WH, Wu FH, He EM, Liu X, Shangguan ZP, Zheng HL (2015) Hydrogen sulfide enhances salt tolerance through nitric oxide-mediated maintenance of ion homeostasis in barley seedling roots. Sci Rep 5:12516. https://doi.org/10.1038/srep12516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J, Shang YT, Wang WH, Chen XY, He EM, Zheng HL, Shangguan Z (2016) Hydrogen sulfide-mediated polyamines and sugar changes are involved in hydrogen sulfide-induced drought tolerance in Spinacia oleracea seedlings. Front Plant Sci 7:1173. https://doi.org/10.3389/fpls.2016.01173

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Yang B, Hao Z, Zhu J, Zhang Y, Xu T (2017) Exogenous hydrogen sulfide ameliorates seed germination and seedling growth of cauliflower under lead stress and its antioxidant role. J Plant Growth Regul 37:5–15

    Google Scholar 

  • Choudhary SP, Kanwar M, Bhardwaj R, Yu JQ, Tran LSP (2012) Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS ONE 7:e33210. https://doi.org/10.1371/journal.pone.0033210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corpas FJ (2019) Hydrogen sulfide: a new warrior against abiotic stress. Trends Plant Sci 24:983–988

    PubMed  CAS  Google Scholar 

  • Corpas FJ, González-Gordo S, Cañas A, Palma JM (2019) Nitric oxide and hydrogen sulfide in plants: which comes first? J Exp Bot 70:4391–4404

    PubMed  Google Scholar 

  • da Silva CJ, Fontes EPB, Modolo LV (2017) Salinity-induced accumulation of endogenous H2S and NO is associated with modulation of the antioxidant and redox defense systems in Nicotiana tabacum L. cv. Havana. Plant Sci 256:148–159

    PubMed  Google Scholar 

  • da Silva CJ, Mollica DC, Vicente MH, Peres LE, Modolo LV (2018) NO, hydrogen sulfide does not come first during tomato response to high salinity. Nitric Oxide 76:164–173

    PubMed  CAS  Google Scholar 

  • Dar TA, Uddin M, Khan MMA, Hakeem KR, Jaleel H (2015) Jasmonates counter plant stress: a review. Environ Exp Bot 115:49–57

    CAS  Google Scholar 

  • Deng YQ, Bao J, Yuan F, Liang X, Feng ZT, Wang BS (2016) Exogenous hydrogen sulfide alleviates salt stress in wheat seedlings by decreasing Na+ content. Plant Growth Regul 79:391–399

    CAS  Google Scholar 

  • Diao Q, Song Y, Shi D, Qi H (2017) Interaction of polyamines, abscisic acid, nitric oxide, and hydrogen peroxide under chilling stress in tomato (Lycopersicon esculentum Mill.) seedlings. Front Plant Sci 8:203. https://doi.org/10.3389/fpls.2017.00203

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding H, Ma D, Huang X, Hou J, Wang C, Xie Y, Wang Y, Qin H, Guo T (2019) Exogenous hydrogen sulfide alleviates salt stress by improving antioxidant defenses and the salt overly sensitive pathway in wheat seedlings. Acta Physiol Plant 41:123. https://doi.org/10.1007/s11738-019-2918-6

    Article  CAS  Google Scholar 

  • Dong N, Li Y, Qi J, Chen Y, Hao Y (2018) Nitric oxide synthase-dependent nitric oxide production enhances chilling tolerance of walnut shoots in vitro via involvement chlorophyll fluorescence and other physiological parameter levels. Sci Hortic 230:68–77

    CAS  Google Scholar 

  • Freschi L (2013) Nitric oxide and phytohormone interactions: current status and perspectives. Front Plant Sci 4:398. https://doi.org/10.3389/fpls.2013.00398

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu MM, Dawood M, Wang NH, Wu F (2019) Exogenous hydrogen sulfide reduces cadmium uptake and alleviates cadmium toxicity in barley. Plant Growth Regul 89:227–237

    CAS  Google Scholar 

  • Fukudome M, Watanabe E, Osuki KI, Uchi N, Uchiumi T (2019) Ectopic or over-expression of class 1 phytoglobin genes confers flooding tolerance to the root nodules of Lotus japonicus by scavenging nitric oxide. Antioxidants 8(7):206. https://doi.org/10.3390/antiox8070206

    Article  PubMed Central  CAS  Google Scholar 

  • Ge Y, Hu KD, Wang SS, Hu LY, Chen XY, Li YH, Yang Y, Yang F, Zhang H (2017) Hydrogen sulfide alleviates postharvest ripening and senescence of banana by antagonizing the effect of ethylene. PLoS ONE 12(6):e0180113. https://doi.org/10.1371/journal.pone.0180113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Hossain MS et al (2017) Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. Int J Mol Sci 18:200. https://doi.org/10.3390/ijms18010200

    Article  PubMed Central  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Bhuyan MB, Oku H, Fujita M (2018) Exogenous nitric oxide pretreatment protects Brassica napus L. seedlings from paraquat toxicity through the modulation of antioxidant defense and glyoxalase systems. Plant Physiol Biochem 126:173–186

    PubMed  CAS  Google Scholar 

  • He M, He C-Q, Ding N-Z (2018) Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Front Plant Sci 9:1771. https://doi.org/10.3389/fpls.2018.01771

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain P, Bhatla SC (2018) Molecular mechanisms accompanying nitric oxide signalling through tyrosine nitration and S-nitrosylation of proteins in plants. Funct Plant Biol 45:70–82

    CAS  Google Scholar 

  • Jaiswal A, Srivastava JP (2018) Changes in reactive oxygen scavenging systems and protein profiles in maize roots in response to nitric oxide under waterlogging stress. Indian J Biochem Biophys 55:26–33

    CAS  Google Scholar 

  • Jez JM, Dey S (2013) The cysteine regulatory complex from plants and microbes: what was old is new again. Curr Opin Struct Biol 23:302–310

    PubMed  CAS  Google Scholar 

  • Jiang JL, Tian Y, Li L, Yu M, Hou RP, Ren XM (2019) H2S alleviates salinity stress in cucumber by maintaining the Na+/K+ balance and regulating H2S metabolism and oxidative stress response. Front Plant Sci 10:678. https://doi.org/10.3389/fpls.2019.00678

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaya C, Akram NA, Ashraf M (2018) Influence of exogenously applied nitric oxide on strawberry (Fragaria × ananassa) plants grown under iron deficiency and/or saline stress. Physiol Plant. https://doi.org/10.1111/ppl.12818

    Article  PubMed  Google Scholar 

  • Kaya C, Ashraf M, Alyemeni MN, Ahmad P (2019) Responses of nitric oxide and hydrogen sulfide in regulating oxidative defence system in wheat plants grown under cadmium stress. Physiol Plant. https://doi.org/10.1111/ppl.13012

    Article  PubMed  Google Scholar 

  • Kharbech O, Houmani H, Chaoui A, Corpas FJ (2017) Alleviation of Cr(VI)-induced oxidative stress in maize (Zea mays L.) seedlings by NO and H2S donors through differential organ-dependent regulation of ROS and NADPH-recycling metabolisms. J Plant Physiol 219:71–80

    PubMed  CAS  Google Scholar 

  • Khokon MAR, Okuma EIJI, Hossain MA, Munemasa S, Uraji M, Nakamura Y, Mori IC, Murata Y (2011) Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant Cell Environ 34:434–443

    PubMed  CAS  Google Scholar 

  • Klein A, Hüsselmann L, Keyster M, Ludidi N (2018) Exogenous nitric oxide limits salt-induced oxidative damage in maize by altering superoxide dismutase activity. S Afr J Bot 115:44–49

    CAS  Google Scholar 

  • Kolupaev YE, Firsova EN, Yastreb TO, Ryabchun NI, Kirichenko VV (2019) Effect of hydrogen sulfide donor on antioxidant state of wheat plants and their resistance to soil drought. Russ J Plant Physiol 66:59–66

    CAS  Google Scholar 

  • Kou N, Xiang Z, Cui W, Li L, Shen W (2018) Hydrogen sulfide acts downstream of methane to inducecucumber adventitious root development. J Plant Physiol 228:113–120

    PubMed  CAS  Google Scholar 

  • Kushwaha BK, Singh S, Tripathi DK, Sharma S, Prasad SM, Chauhan DK, Kumar V, Singh VP (2019) New adventitious root formation and primary root biomass accumulation are regulated by nitric oxide and reactive oxygen species in rice seedlings under arsenate stress. J Hazard Mater 361:134–140

    PubMed  CAS  Google Scholar 

  • Lamotte O, Bertoldo JB, Besson-Bard A, Rosnoblet C, Aimé S, Hichami S, Terenzi H, Wendehenne D (2015) Protein S-nitrosylation: specificity and identification strategies in plants. Front Chem 2:114. https://doi.org/10.3389/fchem.2014.00114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li ZG (2015a) Analysis of some enzymes activities of hydrogen sulfide metabolism in plants. In: Cadenas E, Packer L (eds) Methods in enzymology: hydrogen sulfide in redox biology, Part B, vol 555. Academic Press, Cambridge, pp 253–269

    Google Scholar 

  • Li ZG (2015b) Synergistic effect of antioxidant system and osmolyte in hydrogen sulfide and salicylic acid crosstalk-induced heat tolerance in maize (Zea mays L.) seedlings. Plant Signal Behav 10:e1051278. https://doi.org/10.1080/15592324.2015.1051278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li YJ, Chen J, Xian M, Zhou LG, Han FX, Gan LJ, Shi ZQ (2014) In site bioimaging of hydrogen sulfide uncovers its pivotal role in regulating nitric oxide-induced lateral root formation. PLoS ONE 9:e90340. https://doi.org/10.1371/journal.pone.0090340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li ZG, Long WB, Yang SZ, Wang YC, Tang JH, Wen L, Zhu BY, Min X (2015) Endogenous hydrogen sulfide regulated by calcium is involved in thermotolerance in tobacco Nicotiana tabacum L. suspension cell cultures. Acta Physiol Plant 37:219. https://doi.org/10.1007/s11738-015-1971-z

    Article  CAS  Google Scholar 

  • Li D, Limwachiranon J, Li L, Du R, Luo Z (2016) Involvement of energy metabolism to chilling tolerance induced by hydrogen sulfide in cold-stored banana fruit. Food Chem 208:272–278

    PubMed  CAS  Google Scholar 

  • Li YF, Fan Y, Ma Y, Zhang Z, Yue HB, Wang LJ, Li J, Jiao Y (2017) Effects of exogenous γ-aminobutyric acid (GABA) on photosynthesis and antioxidant system in pepper (Capsicum annuum, L.) seedlings under low light stress. J Plant Growth Regul 36:1–14

    CAS  Google Scholar 

  • Li C, Song Y, Guo L, Gu X, Muminov MA, Wang T (2018) Nitric oxide alleviates wheat yield reduction by protecting photosynthetic system from oxidation of ozone pollution. Environ Pollut 236:296–303

    PubMed  CAS  Google Scholar 

  • Liu X, Chen J, Wang GH, Wang WH, Shen ZJ, Luo MR, Gao GF, Simon M, Ghoto K, Zheng HL (2016) Hydrogen sulfide alleviates zinc toxicity by reducing zinc uptake and regulating genes expression of antioxidative enzymes and metallothioneins in roots of the cadmium/zinc hyperaccumulator Solanum nigrum L. Plant Soil 400:177–192. https://doi.org/10.1007/s11104-015-2719-7

    Article  CAS  Google Scholar 

  • Liu T, Xu J, Li J, Hu X (2019) NO is involved in JA-and H2O2-mediated ALA-induced oxidative stress tolerance at low temperatures in tomato. Environ Exp Bot 161:334–343

    CAS  Google Scholar 

  • Luo Z, Li D, Du R, Mou W (2015) Hydrogen sulfide alleviates chilling injury of banana fruit by enhanced antioxidant system and proline content. Sci Hortic 183:144–151. https://doi.org/10.1016/j.scienta.2014.12.021

    Article  CAS  Google Scholar 

  • Ma D, Ding H, Wang C, Qin H, Han Q, Hou J, Lu H, Xie Y, Guo T (2016) Alleviation of drought stress by hydrogen sulfide is partially related to the abscisic acid signaling pathway in wheat. PLoS ONE 11:e0163082. https://doi.org/10.1371/journal.pone.0163082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Majtan T, Krijt J, Sokolová J, Křížková M, Ralat MA, Kent J, Gregory JF III, Kožich V, Kraus JP (2018) Biogenesis of hydrogen sulfide and thioethers by cystathionine beta-synthase. Antioxid Redox Signal 28(4):311–323

    PubMed  CAS  Google Scholar 

  • Melo NK, Bianchetti RE, Lira BS, Oliveira PM, Zuccarelli R, Dias DL, Demarco D, Peres LEP, Rossi M, Freschi L (2016) Nitric oxide, ethylene and auxin crosstalk mediates greening and plastid development in deetiolating tomato seedlings. Plant Physiol 170:2278–2294

    PubMed  PubMed Central  CAS  Google Scholar 

  • Moreau M, Lindermayr C, Durner J, Klessig DF (2010) NO synthesis and signalling in plants-where do we stand? Physiol Plant 138:372–383

    PubMed  CAS  Google Scholar 

  • Munawar A, Akram NA, Ahmad A, Ashraf M (2019) Nitric oxide regulates oxidative defense system, key metabolites and growth of broccoli (Brassica oleracea L.) plants under water limited conditions. Sci Hortic 254:7–13

    CAS  Google Scholar 

  • Mur LA, Mandon J, Persijn S, Cristescu SM, Moshkov IE, Novikova GV, Hall MA, Harren FJ, Hebelstrup KH, Gupta KJ (2013) Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants 5:pls052. https://doi.org/10.1093/aobpla/pls052

    Article  PubMed  CAS  Google Scholar 

  • Nagpure BV, Bian JS (2016) Interaction of hydrogen sulfide with nitric oxide in the cardiovascular system. Oxidat Med Cell Longev. https://doi.org/10.1155/2016/6904327

    Article  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM et al (2016) Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. Ecotoxicol Environ Saf 126:245–255

    PubMed  CAS  Google Scholar 

  • Okant M, Kaya C (2019) The role of endogenous nitric oxide in melatonin-improved tolerance to lead toxicity in maize plants. Environ Sci Pollut Res 26(12):11864–11874

    CAS  Google Scholar 

  • Papanatsiou M, Scuffi D, Blatt MR, Garcia-Mata C (2015) Hydrogen sulphide regulates inward-rectifying K+ channels in conjunction with stomatal closure. Plant Physiol 168:29–35

    PubMed  PubMed Central  CAS  Google Scholar 

  • Parankusam S, Adimulam SS, Bhatnagar-Mathur P, Sharma KK (2017) Nitric oxide (NO) in plant heat stress tolerance: current knowledge and perspectives. Front Plant Sci 8:1582. https://doi.org/10.3389/fpls.2017.01582

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng R, Bian Z, Zhou L, Cheng W, Hai N, Yang C, Yang T, Wang X, Wang C (2016) Hydrogen sulfide enhances nitric oxide-induced tolerance of hypoxia in maize (Zea mays L.). Plant Cell Rep 35:2325–2340

    PubMed  CAS  Google Scholar 

  • Praveen A, Gupta M (2018) Nitric oxide confronts arsenic stimulated oxidative stress and root architecture through distinct gene expression of auxin transporters, nutrient related genes and modulates biochemical responses in Oryza sativa L. Environ Pollut 240:950–962

    PubMed  CAS  Google Scholar 

  • Purayannur S, Kumar K, Kaladhar VC, Verma PK (2017) Phylogenomic analysis of MKKs and MAPKs from 16 legumes and detection of interacting pairs in chickpea divulge MAPK signalling modules. Sci Rep 7:5026. https://doi.org/10.1038/s41598-017-04913-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qi Q, Guo Z, Liang Y, Li K, Xu H (2019) Hydrogen sulfide alleviates oxidative damage under excess nitrate stress through MAPK/NO signaling in cucumber. Plant Physiol Biochem 135:1–8

    PubMed  CAS  Google Scholar 

  • Qiao Z, Jing T, Liu Z, Zhang L, Jin Z, Liu D, Pei Y (2015) H2S acting as a downstream signaling molecule of SA regulates Cd tolerance in Arabidopsis. Plant Soil 393:137–146

    CAS  Google Scholar 

  • Rai KK, Rai N, Rai SP (2018) Salicylic acid and nitric oxide alleviate high temperature induced oxidative damage in Lablab purpureus L. plants by regulating bio-physical processes and DNA methylation. Plant Physiol Biochem 128:72–88

    PubMed  CAS  Google Scholar 

  • Reda M, Golicka A, Kabała K, Janicka M (2018) Involvement of NR and PM-NR in NO biosynthesis in cucumber plants subjected to salt stress. Plant Sci 267:55–64

    PubMed  CAS  Google Scholar 

  • Rizwan M, Mostofa MG, Ahmad MZ, Imtiaz M, Mehmood S, Adeel M, Dai Z, Li Z, Aziz O, Zhang Y, Tu S (2018) Nitric oxide induces rice tolerance to excessive nickel by regulating nickel uptake, reactive oxygen species detoxification and defense-related gene expression. Chemosphere 191:23–35

    PubMed  CAS  Google Scholar 

  • Sami F, Faizan M, Faraz A, Siddiqui H, Yusuf M, Hayat S (2018) Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress. Nitric Oxide 73:22–38

    PubMed  CAS  Google Scholar 

  • Santa-Cruz DM, Pacienza NA, Zilli CG, Tomaro ML, Balestrasse KB, Yannarelli GG (2014) Nitric oxide induces specific isoforms of antioxidant enzymes in soybean leaves subjected to enhanced ultraviolet-B radiation. J Photochem Photobiol B 141:202–209

    PubMed  CAS  Google Scholar 

  • Santolini J, André F, Jeandroz S, Wendehenne D (2017) Nitric oxide synthase in plants: where do we stand? Nitric Oxide 63:30–38

    PubMed  CAS  Google Scholar 

  • Sanz L, Albertos P, Mateos I, Sánchez-Vicente I, Lechón T, Fernández-Marcos M, Lorenzo O (2015) Nitric oxide (NO) and phytohormones crosstalk during early plant development. J Exp Bot 66:2857–2868

    PubMed  CAS  Google Scholar 

  • Sevilla F, Camejo D, Ortiz-Espín A, Calderón A, Lázaro JJ, Jiménez A (2015) The thioredoxin/peroxiredoxin/sulfiredoxin system: current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species. J Exp Bot 66:2945–2955

    PubMed  CAS  Google Scholar 

  • Shams M, Ekinci M, Ors S, Turan M, Agar G, Kul R, Yildirim E (2019) Nitric oxide mitigates salt stress effects of pepper seedlings by altering nutrient uptake, enzyme activity and osmolyte accumulation. Physiol Mol Biol Plants 25(5):1149–1161

    PubMed  CAS  Google Scholar 

  • Sharma S, Singh HP, Batish DR, Kohli RK (2019) Nitric oxide induced modulations in adventitious root growth, lignin content and lignin synthesizing enzymes in the hypocotyls of Vigna radiata. Plant Physiol Biochem 141:225–230

    PubMed  CAS  Google Scholar 

  • Shen B, Zhang X, Ma H, Yao Y, Liu T (2013) A comparative study of Mn/CeO2, Mn/ZrO2 and Mn/Ce-ZrO2 for low temperature selective catalytic reduction of NO with NH3 in the presence of SO2 and H2O. J Environ Sci 25:791–800

    CAS  Google Scholar 

  • Shen ZJ, Chen J, Ghoto K, Hu WJ, Gao GF, Luo MR, Li Z, Simon M, Zhu XY, Zheng HL (2018) Proteomic analysis on mangrove plant Avicennia marina leaves reveals nitric oxide enhances the salt tolerance by up-regulating photosynthetic and energy metabolic protein expression. Tree Physiol 38:1605–1622

    PubMed  CAS  Google Scholar 

  • Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y (2015) Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347:519–522

    PubMed  CAS  Google Scholar 

  • Shiva S (2010) Mitochondria as metabolizers and targets of nitrite. Nitric Oxide 22:64–74

    PubMed  CAS  Google Scholar 

  • Singh S, Prasad SM (2019) Management of chromium (VI) toxicity by calcium and sulfur in tomato and brinjal: Implication of nitric oxide. J Hazard Mater 373:212–223

    PubMed  CAS  Google Scholar 

  • Singh VP, Singh S, Kumar J, Prasad SM (2015) Hydrogen sulfide alleviates toxic effects of arsenate in pea seedlings through up-regulation of the ascorbate–glutathione cycle: possible involvement of nitric oxide. J Plant Physiol 181:20–29. https://doi.org/10.1016/j.jplph.2015.03.015

    Article  PubMed  CAS  Google Scholar 

  • Su J, Zhang Y, Nie Y, Cheng D, Wang R, Hu H, Chen J, Zhang J, Du Y, Shen W (2018) Hydrogen-induced osmotic tolerance is associated with nitric oxide-mediated proline accumulation and reestablishment of redox balance in alfalfa seedlings. Environ Exp Bot 147:249–260

    CAS  Google Scholar 

  • Sun CL, Liu LJ, Lu LL, Jin CW, Lin XY (2018) Nitric oxide acts downstream of hydrogen peroxide in regulating aluminum-induced antioxidant defense that enhances aluminum resistance in wheat seedlings. Environ Exp Bot 145:95–103

    CAS  Google Scholar 

  • Tailor A, Tandon R, Bhatla SC (2019) Nitric oxide modulates polyamine homeostasis in sunflower seedling cotyledons under salt stress. Plant Signal Behav 14:1667730. https://doi.org/10.1080/15592324.2019.1667730

    Article  PubMed  CAS  Google Scholar 

  • Thao NP, Khan MIR, Thu NBA, Hoang XLT, Asgher M, Khan NA, Tran LSP (2015) Role of ethylene and its cross talk with other signaling molecules in plant responses to heavy metal stress. Plant Physiol 169:73–84

    PubMed  PubMed Central  Google Scholar 

  • Tichá T, Sedlářová M, Činčalová L, Trojanová ZD, Mieslerová B, Lebeda A, Luhová L, Petřivalský M (2018) Involvement of S-nitrosothiols modulation by S-nitrosoglutathione reductase in defence responses of lettuce and wild Lactuca spp. to biotrophic mildews. Planta 247:1203–1215

    PubMed  Google Scholar 

  • Valivand M, Amooaghaie R, Ahadi A (2019) Seed priming with H2S and Ca2+ trigger signal memory that induces cross-adaptation against nickel stress in zucchini seedlings. Plant Physiol Biochem 143:286–298

    PubMed  CAS  Google Scholar 

  • van Dongen JT, Licausi F (2015) Oxygen sensing and signaling. Annu Rev Plant Biol 66:345–367

    PubMed  Google Scholar 

  • Wang L, Wan R, Shi Y, Xue S (2016) Hydrogen sulfide activates S-type anion channel via OST1 and Ca2+ modules. Mol Plant 9:489–491

    PubMed  Google Scholar 

  • Wang H, Hou J, Li Y, Zhang Y, Huang J, Liang W (2017) Nitric oxide-mediated cytosolic glucose-6-phosphate dehydrogenase is involved in aluminum toxicity of soybean under high aluminum concentration. Plant Soil 416:39–52

    CAS  Google Scholar 

  • Waszczak C, Akter S, Eeckhout D, Persiau G, Wahni K, Bodra N, Van Molle I, De Smet B, Vertommen D, Gevaert K, De Jaeger G (2014) Sulfenome mining in Arabidopsis thaliana. Proc Natl Acad Sci USA 111:11545–11550

    PubMed  CAS  Google Scholar 

  • Wedmann R, Onderka C, Wei S, Szijártó IA, Miljkovic JL, Mitrovic A, Lange M, Savitsky S, Yadav PK, Torregrossa R, Harrer EG (2016) Improved tag-switch method reveals that thioredoxin acts as depersulfidase and controls the intracellular levels of protein persulfidation. Chem Sci 7:3414–3426

    PubMed  PubMed Central  CAS  Google Scholar 

  • Weisslocker-Schaetzel M, André F, Touazi N, Foresi N, Lembrouk M, Dorlet P, Frelet-Barrand A, Lamattina L, Santolini J (2017) The NOS-like protein from the microalgae Ostreococcus tauri is a genuine and ultrafast NO-producing enzyme. Plant Sci 265:100–111

    PubMed  CAS  Google Scholar 

  • Wojtyla L, Lechowska K, Kubala S, Garnczarska M (2016) Different modes of hydrogen peroxide action during seed germination. Front Plant Sci 7:66. https://doi.org/10.3389/fpls.2016.00066

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Zhang C, Lai D, Sun Y, Samma MK, Zhang J, Shen W (2014) Hydrogen sulfide delays GA-triggered programmed cell death in wheat aleurone layers by the modulation of glutathione homeostasis and heme oxygenase-1 expression. J Plant Physiol 171:53–62

    PubMed  CAS  Google Scholar 

  • Yamasaki H, Cohen MF (2016) Biological consilience of hydrogen sulfide and nitric oxide in plants: gases of primordial earth linking plant, microbial and animal physiologies. Nitric Oxide 55:91–100

    PubMed  Google Scholar 

  • Yuan S, Patel RP, Kevil CG (2015) Working with nitric oxide and hydrogen sulfide in biological systems. Am J Physiol Lung Cell Mol Physiol 308:L403–L415

    PubMed  CAS  Google Scholar 

  • Yuanjie D, Wei-feng C, Xiaoying B, Fengzhen L, Yongshan W (2019) Effects of exogenous nitric oxide and 24-epibrassinolide on physiological characteristics of peanut under cadmium stress. Pedosphere 29:45–59. https://doi.org/10.1016/S1002-0160(17)60376-X

    Article  Google Scholar 

  • Zanganeh R, Jamei R, Rahmani F (2019) Role of salicylic acid and hydrogen sulfide in promoting lead stress tolerance and regulating free amino acid composition in Zea mays L. Acta Physiol Plant 41:94. https://doi.org/10.1007/s11738-019-2892-z

    Article  CAS  Google Scholar 

  • Zhan N, Wang C, Chen L, Yang H, Feng J, Gong X, Ren B, Wu R, Mu J, Li Y, Liu Z (2018) S-nitrosylation targets GSNO reductase for selective autophagy during hypoxia responses in plants. Mol Cell 71:142–154

    PubMed  CAS  Google Scholar 

  • Zhang J, Buegger F, Albert A, Ghirardo A, Winkler B, Schnitzler JP, Hebelstrup KH, Durner J, Lindermayr C (2019) Phytoglobin overexpression promotes barley growth in the presence of enhanced level of atmospheric nitric oxide. J Exp Bot 70(17):4521–4537

    PubMed  PubMed Central  Google Scholar 

  • Zhou Z-H, Wang Y, Ye X-Y, Li Z-G (2018) Signaling molecule hydrogen sulfide improves seed germination and seedling growth of Maize (Zea mays L.) under high temperature by inducing antioxidant system and osmolyte biosynthesis. Front Plant Sci 9:1288. https://doi.org/10.3389/fpls.2018.01288

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Liao W, Wang M, Niu L, Xu Q, Jin X (2016) Nitric oxide is required for hydrogen gas-induced adventitious root formation in cucumber. J Plant Physiol 195:50–58

    PubMed  CAS  Google Scholar 

  • Zhu CQ, Zhang JH, Sun LM, Zhu LF, Abliz B, Hu WJ, Zhong C, Bai ZG, Sajid H, Cao XC, Jin QY (2018) Hydrogen sulfide alleviates aluminum toxicity via decreasing apoplast and symplast Al contents in rice. Front Plant Sci 9:294. https://doi.org/10.3389/fpls.2018.00294

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the Japanese government, Ministry of Education, Culture, Sports, Science and Technology (MEXT) for providing research grants. We thank Taufika Islam and Mira Rahman, Department of Agronomy, Sher-e-Bangla Agricultural University for the proofreading of the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Fujita.

Ethics declarations

Conflict of interest

No potential conflicts of interest were disclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuyan, M.H.M.B., Hasanuzzaman, M., Parvin, K. et al. Nitric oxide and hydrogen sulfide: two intimate collaborators regulating plant defense against abiotic stress. Plant Growth Regul 90, 409–424 (2020). https://doi.org/10.1007/s10725-020-00594-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-020-00594-4

Keywords

Navigation