Skip to main content
Log in

Analyzing the grape leaf proteome and photosynthetic process provides insights into the injury mechanisms of ozone stress

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Ozone can cause damage to plant tissues. However, little information is available about this global and systematic damage mechanism of grape leaf photosynthetic apparatus. In this study, tandem mass tags (TMT) analysis and physiological responses indicated severe damage to the chloroplasts, with differentially expressed proteins mainly distributed in the chloroplasts. Under ozone stress, the expression of the PSI and PSII structural proteins PsbR, PsaK, PsaA and PSII reactive center protein D1 levels were down-regulated, and the inhibition of D1 protein turnover further aggravated the photodamage of photosystem II (PSII), resulting in a significant decrease in the actual photochemical efficiency of PSII (Y(II)) and actual photochemical efficiency of PSI (Y(I)). The xanthophyll cycle-related protein VDE and ZEP and the NDH subunit of the cyclic electron transport-related protein PGR5-like protein 1A and subcomplex B1 protein were upregulated in response to ozone stress, which was accompanied by a high level of ETRI-ETRII ratio. However, these defense mechanisms are not strong enough. Several dysfunctional antioxidant-related proteins have shown limited ability to scavenge reactive oxygen species, leading to reactive oxygen species burst and eventual photodamage. The system analysis provides new insights into the damage and molecular defense mechanisms of photosynthetic apparatus by ozone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agathokleous E, Kitao M, Qingnan C, Saitanis CJ, Paoletti E, Manning WJ, Watanabe T, Koike T (2018) Effects of ozone (O3) and ethylenediurea (EDU) on the ecological stoichiometry of a willow grown in a free-air exposure system. Environ Pollut 238:663–676

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55(1):373–399

    Article  CAS  PubMed  Google Scholar 

  • Arnoux P, Morosinotto T, Saga G, Bassi R, Pignol D (2009) A structural basis for the pH-dependent xanthophyll cycle in Arabidopsis thaliana. Plant Cell 21(7):2036–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashmore M (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28(8):949–964

    Article  CAS  Google Scholar 

  • Bagard M, Le Thiec D, Delacote E, Hasenfratz-Sauder MP, Banvoy J, Gérard J, Dizengremel P, Jolivet Y (2008) Ozone‐induced changes in photosynthesis and photorespiration of hybrid poplar in relation to the developmental stage of the leaves. Physiol Plant 134(4):559–574

    Article  CAS  PubMed  Google Scholar 

  • Biswas DK, Xu H, Li YG, Ma BL, Jiang GM (2013) Modification of photosynthesis and growth responses to elevated CO2 by ozone in two cultivars of winter wheat with different years of release. J Exp Bot 64(6):1485–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bussotti F, Strasser RJ, Schaub M (2007) Photosynthetic behavior of woody species under high ozone exposure probed with the JIP-test: a review. Environ Pollut 147(3):430–437

    Article  CAS  PubMed  Google Scholar 

  • Calatayud A, Barreno E (2004) Response to ozone in two lettuce varieties on chlorophyll a fluorescence, photosynthetic pigments and lipid peroxidation. Plant Physiol Biochem 42(6):549–555

    Article  CAS  PubMed  Google Scholar 

  • Calatayud A, Ramirez JW, Iglesias DJ, Barreno E (2002) Effects of ozone on photosynthetic CO2 exchange, chlorophyll a fluorescence and antioxidant systems in lettuce leaves. Physiol Plant 116(3):308–316

    Article  CAS  Google Scholar 

  • Cao J-L, Wang L, Zeng Q, Liang J, Tang H-Y, Xie Z-B, Liu G, Zhu J-G, Kobayashi K (2009) Characteristics of photosynthesis in wheat cultivars with different sensitivities to ozone under O3-free air concentration enrichment conditions. Acta Agr Sin 35(8):1500–1507

    CAS  Google Scholar 

  • Cao X, Zhu C, Zhong C, Hussain S, Zhu L, Wu L, Jin Q (2018) Mixed-nitrogen nutrition-mediated enhancement of drought tolerance of rice seedlings associated with photosynthesis, hormone balance and carbohydrate partitioning. Plant Growth Regul 84(3):451–465

    Article  CAS  Google Scholar 

  • Che X, Zhang Z, Jin L, Liu M, Li Y, Gao H, Zhao S (2016) Effect of reducing nitric oxide in Rumex K-1 leaves on the photoprotection of photosystem II under high temperature with strong light. J Plant Growth Regul 35(4):1118–1125

    Article  CAS  Google Scholar 

  • Chen Q, Zhang X, Liu Y, Wei J, Shen W, Shen Z, Cui J (2017) Hemin-mediated alleviation of zinc, lead and chromium toxicity is associated with elevated photosynthesis, antioxidative capacity; suppressed metal uptake and oxidative stress in rice seedlings. Plant Growth Regul 81(2):253–264

    Article  CAS  Google Scholar 

  • Degl'Innocenti E, Guidi L, Soldatini GF (2002) Characterisation of the photosynthetic response of tobacco leaves to ozone: CO2 assimilation and chlorophyll fluorescence. J Plant Physiol 159(8):845–853

    Article  CAS  Google Scholar 

  • Dizengremel P, Le Thiec D, Bagard M, Jolivet Y (2008) Ozone risk assessment for plants: central role of metabolism-dependent changes in reducing power. Environ Pollut 156(1):11–15

    Article  CAS  PubMed  Google Scholar 

  • Du Y-P, Jiang E-S, Wang F-P, Zhang S-Z, Zhai H (2014) Gene expression profiling of rootstock ‘140Ru’and Vitis vinifera L. cv.‘Crimson Seedless’ grape roots infected with grape phylloxera. Plant Growth Regul 73(1):1–8

    Article  CAS  Google Scholar 

  • Elstner EF, Heupel A (1976) Formation of hydrogen peroxide by isolated cell walls from horseradish (Armoracia lapathifolia Gilib.). Planta 130(2):175–180

    Article  CAS  PubMed  Google Scholar 

  • Eskling M, Arvidsson PO, Åkerlund HE (1997) The xanthophyll cycle, its regulation and components. Physiol Plant 100(4):806–816

    Article  CAS  Google Scholar 

  • Feng Z, Uddling J, Tang H, Zhu J, Kobayashi K (2018) Comparison of crop yield sensitivity to ozone between open-top chamber and free‐air experiments. Glob Change Biol 24(6):2231–2238

    Article  Google Scholar 

  • Geng Q-w, Xing H, Sun Y-j, Hao G-m, Zhai H, Du Y-p (2017) Analysis of the interaction effects of light and O3 on fluorescence properties of ‘Cabernet Sauvignon’grapes based on response surface methodology. Sci Hort 225:599–606

    Article  CAS  Google Scholar 

  • Huang W, Zhang S-B, Hu H (2015) Insusceptibility of oxygen-evolving complex to high light in Betula platyphylla. J Plant Res 128(2):307–315

    Article  CAS  PubMed  Google Scholar 

  • Huang Y-W, Zhou Z-Q, Yang H-X, Wei C-X, Wan Y-Y, Wang X-J, Bai J-G (2015b) Glucose application protects chloroplast ultrastructure in heat-stressed cucumber leaves through modifying antioxidant enzyme activity. Biol Plant 59(1):131–138

    Article  CAS  Google Scholar 

  • Iriti M, Faoro F (2008) Oxidative stress, the paradigm of ozone toxicity in plants and animals. Water Air Soil Pollut 187(1–4):285–301

    CAS  Google Scholar 

  • Järvi S, Suorsa M, Tadini L, Ivanauskaite A, Rantala S, Allahverdiyeva Y, Leister D, Aro E-M (2016) Thylakoid-bound FtsH proteins facilitate proper biosynthesis of photosystem I. Plant Physiol 171(2):1333–1343

    PubMed  PubMed Central  Google Scholar 

  • Klughammer C, Schreiber U (1994) An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm. Planta 192(2):261–268

    Article  CAS  Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of Q A redox state and excitation energy fluxes. Photosynth Res 79(2):209

    Article  CAS  PubMed  Google Scholar 

  • Langebartels C, Wohlgemuth H, Kschieschan S, Grün S, Sandermann H (2002) Oxidative burst and cell death in ozone-exposed plants. Plant Physiol Biochem 40(6–8):567–575

    Article  CAS  Google Scholar 

  • Li P, Calatayud V, Gao F, Uddling J, Feng Z (2016) Differences in ozone sensitivity among woody species are related to leaf morphology and antioxidant levels. Tree Physiol 36(9):1105–1116

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Gao J, Gao F, Liu P, Zhao B, Zhang J (2018) Photosynthetic characteristics and chloroplast ultrastructure of summer maize response to different nitrogen supplies. Front Plant Sci 9:576–576

    Article  PubMed  PubMed Central  Google Scholar 

  • Long S, Naidu S (2002) Effects of oxidants at the biochemical, cell and physiological levels, with particular reference to ozone. Air Pollut Plant Life 2:69–88

    Google Scholar 

  • Melgar JC, Guidi L, Remorini D, Agati G, Degl’innocenti E, Castelli S, Camilla Baratto M, Faraloni C, Tattini M (2009) Antioxidant defences and oxidative damage in salt-treated olive plants under contrasting sunlight irradiance. Tree Physiol 29(9):1187–1198

    Article  CAS  PubMed  Google Scholar 

  • Munekage Y, Takeda S, Endo T, Jahns P, Hashimoto T, Shikanai T (2001) Cytochrome b6f mutation specifically affects thermal dissipation of absorbed light energy in Arabidopsis. Plant J 28(3):351–359

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Lin W, Wei H, Krebs SL, Arora R (2008) Phylogenetic analysis and seasonal cold acclimation-associated expression of early light-induced protein genes of Rhododendron catawbiense. Physiol Plant 132(1):44–52

    CAS  PubMed  Google Scholar 

  • Rinnan R, Holopainen T (2004) Ozone effects on the ultrastructure of peatland plants: Sphagnum mosses, Vaccinium oxycoccus, Andromeda polifolia and Eriophorum vaginatum. Ann Bot 94(4):623–634

    Article  PubMed  PubMed Central  Google Scholar 

  • Roose JL, Wegener KM, Pakrasi HB (2007) The extrinsic proteins of photosystem II. Photosynth Res 92(3):369–387

    Article  CAS  PubMed  Google Scholar 

  • Salvatori E, Fusaro L, Mereu S, Bernardini A, Puppi G, Manes F (2013) Different O3 response of sensitive and resistant snap bean genotypes (Phaseolus vulgaris L.): the key role of growth stage, stomatal conductance, and PSI activity. Environ Exp Bot 87:79–91

    Article  CAS  Google Scholar 

  • Schaub M, Calatayud V (2013) Assessment of visible foliar injury induced by ozone. Elsevier, Amsterdam, pp 205–221

  • Sgarbi E, Baroni Fornasiero R, Paulino Lins A, Medeghini Bonatti P (2003) Phenol metabolism is differentially affected by ozone in two cell lines from grape (Vitis vinifera L.) leaf. Plant Sci 165(5):951–957

    Article  CAS  Google Scholar 

  • Solomon S, Qin D, Manning M, Averyt K, Marquis M (2007) Climate change 2007-the physical science basis: working group I contribution to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  • Strasser B, Strasser R (1995) Measuring fast fluorescence transients to address environmental questions: the JIP test, P. Mathis (Ed.), Photosynthesis: from light to biosphere, vol. V. In: Proceedings of the Xth international photosynthesis congress. Montpellier, France, Kluwer Academic Publishers, Dordrecht

  • Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V (2010) Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochim Biophys Acta (BBA) 1797(6–7):1313–1326

    Article  CAS  Google Scholar 

  • Sun Y, Gao Y, Wang H, Yang X, Zhai H, Du Y (2018) Stimulation of cyclic electron flow around PSI as a response to the combined stress of high light and high temperature in grape leaves. Funct Plant Biol 45(10):1038–1045

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Geng Q, Du Y, Yang X, Zhai H (2017) Induction of cyclic electron flow around photosystem I during heat stress in grape leaves. Plant Sci 256:65–71

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Liu X, Zhai H, Gao H, Yao Y, Du Y (2016) Responses of photosystem II photochemistry and the alternative oxidase pathway to heat stress in grape leaves. Acta Physiol Plant 38(10):232

    Article  CAS  Google Scholar 

  • Tiwari S, Agrawal M (2018) Ozone concentrations in troposphere: historical and current perspectives. Tropospheric ozone and its impacts on crop plants. Springer, New York, pp 1–29

    Chapter  Google Scholar 

  • Tran TA, Vassileva V, Petrov P, Popova LP (2013) Cadmium-induced structural disturbances in Pisum sativum leaves are alleviated by nitric oxide. Turk J Bot 37(4):698–707

    CAS  Google Scholar 

  • Valletta A, Salvatori E, Rita Santamaria A, Nicoletti M, Toniolo C, Caboni E, Bernardini A, Pasqua G, Manes F (2016) Ecophysiological and phytochemical response to ozone of wine grape cultivars of Vitis vinifera L. Nat Prod Res 30(22):2514–2522

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Duan W, Takabayashi A, Endo T, Shikanai T, Ye J-Y, Mi H (2006) Chloroplastic NAD (P) H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiol 141(2):465–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei S, Wang X, Jiang D, Dong S (2018) Physiological and proteome studies of maize (Zea mays L.) in response to leaf removal under high plant density. BMC Plant Biol 18(1):378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelm C, Selmar D (2011) Energy dissipation is an essential mechanism to sustain the viability of plants: the physiological limits of improved photosynthesis. J Plant Physiol 168(2):79–87

    Article  CAS  PubMed  Google Scholar 

  • Xing X, Liu Y, Kong X, Liu Y, Li D (2011) Overexpression of a maize dehydrin gene, ZmDHN2b, in tobacco enhances tolerance to low temperature. Plant Growth Regul 65(1):109–118

    Article  CAS  Google Scholar 

  • Xu L, Yue Q, Bian Fe, Sun H, Zhai H, Yao Y (2017) Melatonin enhances phenolics accumulation partially via ethylene signaling and resulted in high antioxidant capacity in grape berries. Front Plant Sci 8:1426

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu X, Guo K, Liang W, Chen Q, Shi J, Shen B (2018) Quantitative proteomics analysis of proteins involved in leaf senescence of rice (Oryza sativa L.). Plant Growth Regul 84(2):341–349

    Article  CAS  Google Scholar 

  • Yamamoto H, Kato H, Shinzaki Y, Horiguchi S, Shikanai T, Hase T, Endo T, Nishioka M, Makino A, Tomizawa K-i, Miyake C (2006) Ferredoxin limits cyclic electron flow around PSI (CEF-PSI) in higher plants-stimulation of CEF-PSI enhances non-photochemical quenching of Chl fluorescence in transplastomic tobacco. Plant Cell Physiol 47(10):1355–1371

    Article  CAS  PubMed  Google Scholar 

  • Yamori W, Sakata N, Suzuki Y, Shikanai T, Makino A (2011) Cyclic electron flow around photosystem I via chloroplast NAD (P) H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice. Plant J 68(6):966–976

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Feng Z, Wang X, Niu J (2012) Responses of native broadleaved woody species to elevated ozone in subtropical China. Environ Pollut 163:149–157

    Article  CAS  PubMed  Google Scholar 

  • Zheng YH, Li X, Li YG, Miao BH, Xu H, Simmons M, Yang XH (2012) Contrasting responses of salinity-stressed salt-tolerant and intolerant winter wheat (Triticum aestivum L.) cultivars to ozone pollution. Plant Physiol Biochem 52:169–178

    Article  CAS  PubMed  Google Scholar 

  • Zheng YH, Li YG, Xia WR, Xu H, Su BY, Jiang GM, Ning TY (2011) Responses of gas exchange, cellular membrane integrity, and antioxidant enzymes activities of salinity-stressed winter wheat to ozone pollution. Photosynthetica 49(3):389

    Article  CAS  Google Scholar 

  • Zhuang M, Lam SK, Li Y, Chen S (2017) Elevated tropospheric ozone affects the concentration and allocation of mineral nutrients of two bamboo species. Sci Total Environ 577:231–235

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program of China (2019YFD1000101), National Natural Sciences Foundation of China in 2016 (31572084), China agricultural research system (CARS-29), and Program for Changjiang Scholars and Innovative Research Team in University (IRT15R42).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanpeng Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14.8 kb)

10725_2020_593_MOESM2_ESM.tif

Supplementary material 2 (TIF 411.1 kb). Figure S1. Quality detection of mass spectrometry data. (A) Protein sequences coverage of different molecular weight. (B) Error distribution of spectra match quality of grape leaves. (C) Number of peptide length distributed in our mass spectrometry data of grape leaves

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Gao, Z., Sun, Y. et al. Analyzing the grape leaf proteome and photosynthetic process provides insights into the injury mechanisms of ozone stress. Plant Growth Regul 91, 143–155 (2020). https://doi.org/10.1007/s10725-020-00593-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-020-00593-5

Keywords

Navigation