Skip to main content
Log in

Shedding light on response of Triticum aestivum cv. Kharchia Local roots to long-term salinity stress through transcriptome profiling

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Among the various abiotic stresses, salinity is one of the major limitations for production and productivity of wheat. Kharchia Local is the most salt-tolerant wheat cultivar developed from farmers’ selection on salt affected areas of India. Here, to investigate the molecular response of Kharchia Local under salinity stress, transcriptome sequencing of root tissue samples at the anthesis stage was performed. Illumina sequencing generated a total of 82.84 million clean reads and were assembled into 1,18,200 unigenes. A set of 10,805 unigenes were differentially expressed in response to salinity stress. Around 8232 unigene-derived SSRs were mined from these DEGs that can be used as functional molecular markers. Expression pattern of salinity stress-responsive unigenes was validated using real time PCR and results were found to be consistent with that of transcriptome profiling. Functional annotation of DEGs against GO, KEGG, COG and BLASTX using nr protein database was performed. This revealed the upregulation of genes involved in various biological processes including ROS homeostasis, ion transport, signal transduction, ABA biosynthesis and osmoregulation. Genes encoding expansin, xyloglucan endotransglucosylase/hydrolase, dehydrins and peroxidases that take part in enhancement of root growth were found to be upregulated under salinity. This could be the reason for better root growth of Kharchia Local under long-term salinity stress as compared to its susceptible counterpart. The present investigation provides primary information on transcriptome profiling of Kharchia Local roots under long-term salinity stress at the anthesis stage. In conclusion, the data generated in this study provide useful insights in understanding the molecular mechanism of salinity stress tolerance and will also serve as a valuable genomic reservoir for functional characterization of salinity responsive genes to develop tolerant genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almeida DM, Oliveira MM, Saibo NJ (2017) Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol 40:326–345

    PubMed  PubMed Central  CAS  Google Scholar 

  • Altunoglu YC, Baloglu P, Yer EN, Pekol S, Baloglu MC (2016) Identification and expression analysis of LEA gene family members in cucumber genome. Plant Growth Regul 80:225–241

    Google Scholar 

  • Ambawat S, Sharma P, Yadav NR, Yadav RC (2013) MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants 19:307–321

    PubMed  PubMed Central  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2016) Group II late embryogenesis abundant (LEA) proteins: structural and functional aspects in plant abiotic stress. Plant Growth Regul 79:1–17

    CAS  Google Scholar 

  • Bernstein N, Eshel A, Beeckman T (2013) Effects of salinity on root growth. In: Eshel A, Beeckman T (eds) Plant roots: the hidden half. CRC Press, Boca Raton, pp 36.1–36.18

    Google Scholar 

  • Chen Y, Ren Y, Zhang G, An J, Yang J, Wang Y, Wang W (2018) Overexpression of the wheat expansin gene TaEXPA2 improves oxidative stress tolerance in transgenic Arabidopsis plants. Plant Physiol Biochem 124:190–198

    PubMed  CAS  Google Scholar 

  • Chen Y, Li C, Zhang B, Yi J, Yang Y, Kong C et al (2019) The role of the late embryogenesis-abundant (LEA) protein family in development and the abiotic stress response: a comprehensive expression analysis of potato (Solanum Tuberosum). Genes. https://doi.org/10.3390/genes10020148

    Article  PubMed  PubMed Central  Google Scholar 

  • Das P, Majumder AL (2019) Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance. Funct Integr Genom 19:61–73

    CAS  Google Scholar 

  • Deng X, Yuan S, Cao H, Lam SM, Shui G, Hong Y, Wang X (2019) Phosphatidylinositol-hydrolyzing phospholipase C4 modulates rice response to salt and drought. Plant Cell Environ 42:536–548

    PubMed  CAS  Google Scholar 

  • Ding J, Zhao L, Chang Y, Zhao W, Du Z, Hao Z (2015) Transcriptome sequencing and characterization of Japanese scallop Patinopecten yessoensis from different shell color lines. PLoS ONE 10(2):e0116406

    PubMed  PubMed Central  Google Scholar 

  • Dong W, Liu X, Li D, Gao T, Song Y (2018) Transcriptional profiling reveals that a MYB transcription factor MsMYB4 contributes to the salinity stress response of alfalfa. PLoS ONE 13(9):e0204033

    PubMed  PubMed Central  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:64–70

    Google Scholar 

  • Du X, Wang G, Ji J, Shi L, Guan C, Jin C (2017) Comparative transcriptome analysis of transcription factors in different maize varieties under salt stress conditions. Plant Growth Regul 81:183–195

    CAS  Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N, Faiq M (2015) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75:391–404

    CAS  Google Scholar 

  • Formentin E, Sudiro C, Ronci MB, Locato V, Barizza E, Stevanato P, Ijaz B, Zottini M, Gara LD, Schiavo FL (2018) H2O2 signature and innate antioxidative profile make the difference between sensitivity and tolerance to salt in rice cells. Front plant sci. https://doi.org/10.3389/fpls.2018.01549

    Article  PubMed  PubMed Central  Google Scholar 

  • Francoz E, Ranocha P, Nguyen-Kim H, Jamet E, Burlat V, Dunand C (2015) Roles of cell wall peroxidases in plant development. Phytochemistry 112:15–21

    PubMed  CAS  Google Scholar 

  • Garg V, Khan AW, Kudapa H, Kale SM, Chitikineni A, Qiwei S, Sharma M, Li C, Zhang B, Xin L, Kishor PK, Varshney RK (2019) Integrated transcriptome, small RNA and degradome sequencing approaches provide insights into Ascochyta blight resistance in chickpea. Plant Biotechnol J. https://doi.org/10.1111/pbi.13026

    Article  PubMed  Google Scholar 

  • Goyal E, Singh AK, Singh RS, Mahato AK, Chand S, Kumar K (2016) Transcriptome profiling of the salt-stress response in Triticum aestivum cv. Kharchia Local. Sci Rep 6:27752

    PubMed  PubMed Central  CAS  Google Scholar 

  • Grabherr MG, Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Ido A, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Palma Fd, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 15:644–652

    Google Scholar 

  • Guan C, Huang YH, Cui X, Liu SJ, Zhou YZ, Zhang YW (2018) Overexpression of gene encoding the key enzyme involved in proline-biosynthesis (PuP5CS) to improve salt tolerance in switchgrass (Panicum virgatum L.). Plant Cell Rep 37:1187–1199

    PubMed  CAS  Google Scholar 

  • Guo C, Yao L, You C, Wang S, Cui J, Ge X, Ma H (2016) MID1 plays an important role in response to drought stress during reproductive development. The Plant J 88:280–293

    PubMed  CAS  Google Scholar 

  • He X, Zeng J, Cao F, Ahmed IM, Zhang G, Vincze E, Wu F (2015) HvEXPB7, a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress. J Exp Bot 66:7405–7419

    PubMed  PubMed Central  CAS  Google Scholar 

  • He R, Zhuang Y, Cai Y, Agüero CB, Liu S, Wu J et al (2018) Overexpression of 9-cis-epoxycarotenoid dioxygenase cisgene in grapevine increases drought tolerance and results in pleiotropic effects. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00970

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoang XLT, Nhi DNH, Thu NBA, Thao NP, Tran LP (2017) Transcription factors and their roles in signal transduction in plants under abiotic stresses. Curr Genom 18:483–497

    Google Scholar 

  • Hong Y, Zhao J, Guo L, Kim SC, Deng X, Wang G, Zhang G, Li M, Wang X (2016) Plant phospholipases D and C and their diverse functions in stress responses. Prog Lipid Res 62:55–74

    PubMed  CAS  Google Scholar 

  • Hu W, Yan Y, Hou X, He Y, Wei Y, Yang G, He G, Peng M (2015) TaPP2C1, a group F2 protein phosphatase 2C gene, confers resistance to salt stress in transgenic tobacco. PLoS ONE 10(6):e0129589

    PubMed  PubMed Central  Google Scholar 

  • Huang Q, Wang Y, Li B, Chang J, Chen M, Li K et al (2015) TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biol. https://doi.org/10.1186/s12870-015-0644-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Isayenkov SV (2019) Genetic sources for the development of salt tolerance in crops. Plant Growth Regul. https://doi.org/10.1007/s10725-019-00519-w

    Article  Google Scholar 

  • Ji T, Li S, Huang M, Di Q, Wang X, Wei M, Shi Q, Li Y, Gong B, Yang F (2017) Overexpression of cucumber phospholipase D alpha gene (CsPLDα) in tobacco enhanced salinity stress tolerance by regulating Na+-K+ balance and lipid peroxidation. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00499

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Deyholos MK (2009) Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol 69:91–105

    PubMed  CAS  Google Scholar 

  • Kaur G, Asthir B (2015) Proline: a key player in plant abiotic stress tolerance. Biol Plant 59:609–619

    CAS  Google Scholar 

  • Kiranmai K, Lokanadha Rao G, Pandurangaiah M, Nareshkumar A, Amaranatha Reddy V, Lokesh U, Venkatesh B, Anthony Johnson AM, Sudhakar C (2018) A novel WRKY transcription factor, MuWRKY3 (Macrotyloma uniflorum lam. Verdc.) enhances drought stress tolerance in transgenic groundnut (Arachis hypogaea L.) plants. Front Plant Sci 9:346. https://doi.org/10.3389/fpls.2018.00346

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuhl JC, Cheung F, Yuan Q, Martin W, Zewdie Y, McCallum J, Catanach A, Rutherford P, Sink KC, Jenderek M, Prince JP, Town CD, Havey MJ (2004) A unique set of 11,008 onion expressed sequence tags reveals expressed sequence and genomic differences between the monocot orders asparagales and poales. Plant Cell 16:114–125

    PubMed  PubMed Central  Google Scholar 

  • Kumar S, Trivedi PK (2018) Glutathione S-transferases: role in combating abiotic stresses including arsenic detoxification in plants. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00751

    Article  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. https://doi.org/10.1186/gb-2009-10-3-r25

    Article  PubMed  PubMed Central  Google Scholar 

  • Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BM, Haag JD, Gould MN, Stewart RM, Kendziorski C (2013) EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics 29:1035–1043

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. https://doi.org/10.1186/1471-2105-12-323

    Article  Google Scholar 

  • Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 1:1658–1659

    Google Scholar 

  • Li H, Gao Y, Xu H, Dai Y, Deng D, Chen J (2013) ZmWRKY33, a WRKY maize transcription factor conferring enhanced salt stress tolerances in Arabidopsis. Plant Growth Regul 70:207–216

    CAS  Google Scholar 

  • Li J, Jiang MM, Ren L, Liu Y, Chen HY (2016) Identification and characterization of CBL and CIPK gene families in eggplant (Solanum melongena L.). Mol Genet Genom 291:1769–1781

    CAS  Google Scholar 

  • Li L, Wang F, Yan P, Jing W, Zhang C, Kudla J, Zhang W (2017) A phosphoinositide-specific phospholipase C pathway elicits stress-induced Ca2+ signals and confers salt tolerance to rice. New Phytol 214:1172–1187

    PubMed  CAS  Google Scholar 

  • Li J, Phan TT, Li YR, Xing YX, Yang LT (2018a) Isolation, transformation and overexpression of sugarcane SoP5CS gene for drought tolerance improvement. Sugar Tech 20:464–473

    CAS  Google Scholar 

  • Li L, Li M, Qi X, Tang X, Zhou Y (2018b) De novo transcriptome sequencing and analysis of genes related to salt stress response in Glehnia littoralis. PeerJ 6:e5681

    PubMed  PubMed Central  Google Scholar 

  • Long W, Zou X, Zhang X (2015) Transcriptome analysis of canola (Brassica napus) under salt stress at the germination stage. PLoS ONE 10:e0116217

    PubMed  PubMed Central  Google Scholar 

  • Luo D, Zhou Q, Wu Y, Chai X, Liu W, Wang Y et al (2019) Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L). BMC Plant Biol. https://doi.org/10.1186/s12870-019-1630-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahajan MM, Goyal E, Singh AK, Gaikwad K, Kanika K (2017) Transcriptome dynamics provide insights into long-term salinity stress tolerance in Triticum aestivum cv. Kharchia Local. Plant Physiol Biochem 121:128–139

    PubMed  CAS  Google Scholar 

  • Mansouri M, Naghavi MR, Alizadeh H, Mohammadi-Nejad G, Mousavi SA, Salekdeh GH, Tada Y (2019) Transcriptomic analysis of Aegilops tauschii during long-term salinity stress. Funct Integr Genom 19:13–28

    CAS  Google Scholar 

  • Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:182–185

    Google Scholar 

  • Munns R, James RA (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253:201–218

    CAS  Google Scholar 

  • Munns R, James RA, Lauchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    PubMed  CAS  Google Scholar 

  • Nagaraju M, Kumar SA, Reddy PS, Kumar A, Rao DM, Kishor PK (2019) Genome-scale identification, classification, and tissue specific expression analysis of late embryogenesis abundant (LEA) genes under abiotic stress conditions in Sorghum bicolor L. PLoS ONE. https://doi.org/10.1371/journal.pone.0209980

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel RK, Jain M (2012) NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE. https://doi.org/10.1371/journal.pone.0030619

    Article  PubMed  PubMed Central  Google Scholar 

  • Qadir M, Quillerou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD (2014) Economics of salt-induced land degradation and restoration. Nat Resour Forum. https://doi.org/10.1111/1477-8947.12054

    Article  Google Scholar 

  • Raggi S, Ferrarini A, Delledonne M, Dunand C, Ranocha P, De Lorenzo G, Cervone F, Ferrari S (2015) The Arabidopsis class III peroxidase AtPRX71 negatively regulates growth under physiological conditions and in response to cell wall damage. Plant Physiol 169:2513–2525

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rahman H, Ramanathan V, Nallathambi J, Duraialagaraja S, Muthurajan R (2016) Over-expression of a NAC67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice. BMC Biotechnol. https://doi.org/10.1186/s12896-016-0261-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Razzaque S, Elias SM, Haque T, Biswas S, Jewel GN, Rahman S, Weng X, Ismail AM, Walia H, Juenger TE, Seraj ZI (2019) Gene expression analysis associated with salt stress in a reciprocally crossed rice population. Sci Rep 9(1):8249

    PubMed  PubMed Central  Google Scholar 

  • Sadak MS (2019) Physiological role of trehalose on enhancing salinity tolerance of wheat plant. Bull Nat Res Centre 43(1):53

    Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00571

    Article  PubMed  PubMed Central  Google Scholar 

  • Sairam RK, Rao KV, Srivastava GC (2002) Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci 163:1037–1046

    CAS  Google Scholar 

  • Schopfer P (2001) Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant J 28:679–688

    PubMed  CAS  Google Scholar 

  • Shinde H, Tanaka K, Dudhate A, Tsugama D, Mine Y, Kamiya T, Gupta SK, Liu S, Takano T (2018) Comparative de novo transcriptomic profiling of the salinity stress responsiveness in contrasting pearl millet lines. Environ Exp Bot 155:619–627

    CAS  Google Scholar 

  • Szepesi A, Szollosi R (2018) Plant metabolites and regulation under environmental stress. Academic Press, London

    Google Scholar 

  • Tatusov RL, Natalie DF, John DJ, Aviva RJ, Boris K, Eugene VK, Dmitri MK et al (2003) The COG database: an updated version includes eukaryotes. BMC Bioinform. https://doi.org/10.1186/1471-2105-4-41

    Article  Google Scholar 

  • Tuteja N (2007) Mechanism of high salinity tolerance in plants. Method Enzymol 428:419–438

    CAS  Google Scholar 

  • Wang J, Ding B, Guo Y, Li M, Chen S, Huang G, Xie X (2014) Overexpression of a wheat phospholipase D gene, TaPLDα, enhances tolerance to drought and osmotic stress in Arabidopsis thaliana. Planta 240:103–115

    PubMed  CAS  Google Scholar 

  • Wang J, Li B, Meng Y, Ma X, Lai Y, Si E, Yang K, Ren P, Shang X, Wang H (2015) Transcriptomic profiling of the salt-stress response in the halophyte Halogeton glomeratus. BMC Genom. https://doi.org/10.1186/s12864-015-1373-z

    Article  Google Scholar 

  • Wang M, Xu Z, Ding A, Kong Y (2018a) Genome-wide identification and expression profiling analysis of the xyloglucan endotransglucosylase/hydrolase gene family in tobacco (Nicotiana tabacum L.). Genes. https://doi.org/10.3390/genes9060273

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Yang Q, Shao Y, Zhang B, Feng A, Meng F, Li W (2018b) GmLEA2-1, a late embryogenesis abundant protein gene isolated from soybean (Glycine max (L.) Merr.), confers tolerance to abiotic stress. Acta Biol Hung 69:270–282

    PubMed  CAS  Google Scholar 

  • Xiao JP, Zhang LL, Zhang HQ, Miao LX (2017) Identification of genes involved in the responses of Tangor (C reticulata × C sinensis) to drought stress. Biomed Res Int. https://doi.org/10.1155/2017/8068725

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie R, Pan X, Zhang J, Ma Y, He S, Zheng Y, Ma Y (2018) Effect of salt-stress on gene expression in citrus roots revealed by RNA-seq. Funct Integr Genom 18:155–173

    CAS  Google Scholar 

  • Xu P, Cai XT, Wang Y, Xing L, Chen Q, Xiang CB (2014) HDG11 upregulates cell-wall-loosening protein genes to promote root elongation in Arabidopsis. J Exp Bot 65(15):4285–4295

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res. https://doi.org/10.1093/nar/gkl031

    Article  PubMed  PubMed Central  Google Scholar 

  • You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci. https://doi.org/10.3389/fpls.2015.01092

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuenyong W, Chinpongpanich A, Comai L, Chadchawan S, Buaboocha T (2018) Downstream components of the calmodulin signaling pathway in the rice salt stress response revealed by transcriptome profiling and target identification. BMC Plant Biol. https://doi.org/10.1186/s12870-018-1538-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Wang Y, Chang L, Zhang T, An J, Liu Y, Cao Y, Zhao X, Sha X, Hu T, Yang P (2016) MsZEP, a novel zeaxanthin epoxidase gene from alfalfa (Medicago sativa), confers drought and salt tolerance in transgenic tobacco. Plant Cell Rep 35:439–453

    PubMed  CAS  Google Scholar 

  • Zhao M, Li Q, Chen Z, Lv Q, Bao F, Wang X, He Y (2018) Regulatory mechanism of ABA and ABI3 on vegetative development in the moss Physcomitrella patens. Int J Mol Sci. https://doi.org/10.3390/ijms19092728

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu D, Hou L, Xiao P, Guo Y, Deyholos MK, Liu X (2019) VvWRKY30, a grape WRKY transcription factor, plays a positive regulatory role under salinity stress. Plant Sci 280:132–142

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by ICAR-National Institute for Plant Biotechnology, New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

MMM, KK, and KG, conceived, designed and coordinated the experiment. MMM and EG were associated with wet lab work and carried out experiment. MMM, EG and AKS involved in in silico data analysis. MMM, EG, AKS, KG and KK were involved in result interpretation and integration besides associated with finalising the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Kumar Kanika.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Electronic supplementary material 1—Figure S1: Enrichment of GO terms under molecular function category (JPEG 121 kb)

Electronic supplementary material 2—Figure S2: Enrichment of GO terms under biological processes category (JPEG 790 kb)

Electronic supplementary material 3—Figure S3: Enrichment of GO terms under cellular component category (JPEG 394 kb)

10725_2019_565_MOESM4_ESM.jpg

Electronic supplementary material 4—Figure S4: Classification of unigenes according to COG database. The most abundantclasses were R- general function prediction only followed by P- inorganic ion transport &metabolism and E- amino acid transport & metabolism (JPG 115 kb)

10725_2019_565_MOESM5_ESM.jpg

Electronic supplementary material 5—Figure S5: Distribution of unigenes into TF families. Out of 47 transcription factor families C2H2, WD40-like, AP2-EREBP, CCHC(Zn) and MYB-HB-like were found to be most abundant (JPG 63 kb)

Electronic supplementary material 6 (DOCX 13 kb)

Electronic supplementary material 7 (XLSX 92 kb)

Electronic supplementary material 8 (XLSX 22 kb)

Electronic supplementary material 9 (XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahajan, M.M., Goyal, E., Singh, A.K. et al. Shedding light on response of Triticum aestivum cv. Kharchia Local roots to long-term salinity stress through transcriptome profiling. Plant Growth Regul 90, 369–381 (2020). https://doi.org/10.1007/s10725-019-00565-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-019-00565-4

Keywords

Navigation