Skip to main content
Log in

Genotypic difference of cadmium tolerance and the associated microRNAs in wild and cultivated barley

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Little study was performed to know how microRNAs (miRNAs) are responsive to cadmium (Cd) stress in barley (Hordeum vulgare). In this study, 16 small RNA libraries of shoot and root tissues from a wild barley accession (WB-1) and cultivated barley (Golden Promise) with contrasting Cd tolerance were constructed and sequenced. Moreover, a degradome library was constructed and analyzed to identify target genes of the miRNAs. Based on high-throughput sequencing, 216 conserved miRNAs (in 59 miRNA families) and 87 novel miRNAs were identified. A total of 238 target genes for 149 miRNAs (113 conserved and 36 novel miRNAs) were detected by the degradome analysis. Among these miRNAs, 45 miRNAs (40 conserved and 5 novel miRNAs) and 43 miRNAs (40 conserved and 3 novel miRNAs) showed differential expression in roots and shoots of two genotypes under Cd conditions. Compared with cultivar Golden Promise, the wild genotype WB-1 had genotype-dependent responses of miR156, miR159, miR166, miR167, miR171 and miR393, which regulate target genes including SPL, MYB, HD-Zip, ARF, GRAS and TIR. Correspondingly, WB-1 had lower Cd concentration and stronger Cd tolerance than Golden Promise. It indicates that miRNAs may play critical roles underlying genotypic difference of Cd tolerance in barley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in arabidopsis. J Biol Chem 283:15932–15945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18:758–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Addo-Quaye C, Miller W, Axtell MJ (2009) CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25:130–131

    Article  CAS  PubMed  Google Scholar 

  • ATSDR (2008) Draft toxicological profile for cadmium. U.S. Department of Health and Human Services, Atlanta

    Google Scholar 

  • Bai B et al (2017) miR393-mediated auxin signaling regulation is involved in root elongation inhibition in response to toxic aluminum stress in barley. Plant Cell Physiol 58:426–439

    CAS  PubMed  Google Scholar 

  • Bao W, Omalley DM, Whetten R, Sederoff RR (1993) A laccase associated with lignification in loblolly-pine xylem. Science 260:672–674

    Article  CAS  PubMed  Google Scholar 

  • Bukhari SAH et al (2015) Genome-wide identification of chromium stress-responsive microRNAs and their target genes in tobacco (Nicotiana tabacum) roots. Environ Toxicol Chem 34:2573–2582

    Article  CAS  PubMed  Google Scholar 

  • Cardon G, Hohmann S, Klein J, Nettesheim K, Saedler H, Huijser P (1999) Molecular characterisation of the Arabidopsis SBP-box genes. Gene 237:91–104

    Article  CAS  PubMed  Google Scholar 

  • Chen ZH et al (2011) Regulation of auxin response by miR393-targeted transport inhibitor response protein 1 is involved in normal development in Arabidopsis. Plant Mol Biol 77:619–629

    Article  CAS  PubMed  Google Scholar 

  • Clemens S, Aarts MGM, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18:92–99

    Article  CAS  PubMed  Google Scholar 

  • Danisman S et al (2012) Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiol 159:1511–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiLaurenzio L et al (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86:423–433

    Article  CAS  Google Scholar 

  • Ding Y, Chen Z, Zhu C (2011) Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). J Exp Bot 62:3563–3573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y et al (2018) MicroRNA166 modulates cadmium tolerance and accumulation in rice. Plant Physiol 177:1691–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109

    Article  CAS  PubMed  Google Scholar 

  • Fang X et al (2013) Identification and comparative analysis of cadmium tolerance-associated miRNAs and their targets in two soybean genotypes. PLoS ONE 8:e81471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S et al (2017) Insights into the miRNA-mediated response of maize leaf to arsenate stress. Environ Exp Bot 137:96–109

    Article  CAS  Google Scholar 

  • Gielen H, Remans T, Vangronsveld J, Cuypers A (2016) Toxicity responses of Cu and Cd: the involvement of miRNAs and the transcription factor SPL7. BMC Plant Biol 16:145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198

    Article  CAS  PubMed  Google Scholar 

  • Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460

    Article  CAS  PubMed  Google Scholar 

  • He Q, Zhu S, Zhang B (2014) MicroRNA-target gene responses to lead-induced stress in cotton (Gossypium hirsutum L.). Funct Integr Genomic 14:507–515

    Article  CAS  Google Scholar 

  • He XY, Zheng WT, Cao FB, Wu FB (2016) Identification and comparative analysis of the microRNA transcriptome in roots of two contrasting tobacco genotypes in response to cadmium stress. Sci Rep 6:32805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegedus A, Erdei S, Horvath G (2001) Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci 160:1085–1093

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Yu Y, Chen Q, Mu G, Shen Z, Zheng L (2017) OsMYB45 plays an important role in rice resistance to cadmium stress. Plant Sci 264:1–8

    Article  CAS  PubMed  Google Scholar 

  • Jarup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharm 238:201–208

    Article  CAS  Google Scholar 

  • Khan A, Khan S, Khan MA, Qamar Z, Waqas M (2015) The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environ Sci Pollut Res 22:13772–13799

    Article  CAS  Google Scholar 

  • Khan MA, Khan S, Khan A, Alam M (2017) Soil contamination with cadmium, consequences and remediation using organic amendments. Sci Total Environ 601:1591–1605

    Article  CAS  PubMed  Google Scholar 

  • Khraiwesh B, Zhu J-K, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. BBA-Gene Regul Mech 1819:137–148

    CAS  Google Scholar 

  • Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218

    Article  CAS  PubMed  Google Scholar 

  • Li X, Shahid MQ, Wu J, Wang L, Liu X, Lu Y (2016) Comparative small RNA analysis of pollen development in autotetraploid and diploid rice. Int J Mol Sci 17:499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim J et al (2000) Molecular analysis of the SCARECROW gene in maize reveals a common basis for radial patterning in diverse meristems. Plant Cell 12:1307–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Qu W, Kadiiska MB (2009) Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol 238:209–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Coruh C, Axtell MJ (2010) Arabidopsis lyrata small RNAs: transient MIRNA and small interfering RNA Loci within the Arabidopsis genus. Plant Cell 22:1090–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN (1999) The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J 18:111–119

    Article  CAS  PubMed  Google Scholar 

  • Sarvepalli K, Nath U (2011a) Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation. Plant J 67:595–607

    Article  CAS  PubMed  Google Scholar 

  • Sarvepalli K, Nath U (2011b) Interaction of TCP4-mediated growth module with phytohormones. Plant Signal Behav 6:1440–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schommer C, Debernardi JM, Bresso EG, Rodriguez RE, Palatnik JF (2014) Repression of cell proliferation by miR319-regulated TCP4. Mol Plant 7:1533–1544

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Xu X, Li T, Cao D, Han Z (2008) An MYB transcription factor from Malus xiaojinensis has a potential role in iron nutrition. J Integr Plant Biol 50:1300–1306

    Article  CAS  PubMed  Google Scholar 

  • Shen C et al (2017a) Comparative analysis of cadmium responsive microRNAs in roots of two Ipomoea aquatica Forsk. cultivars with different cadmium accumulation capacities. Plant Physiol Biochem 111:329–339

    Article  CAS  PubMed  Google Scholar 

  • Shen QF, Fu LB, Qiu L, Feng X, Zhang GP, Wu DZ (2017b) Time-course of ionic responses and proteomic analysis of a Tibetan wild barley at early stage under salt stress. Plant Growth Regul 81:11–21

    Article  CAS  Google Scholar 

  • Siemianowski O, Barabasz A, Kendziorek M, Ruszczynska A, Bulska E, Williams LE, Antosiewicz DM (2014) HMA4 expression in tobacco reduces Cd accumulation due to the induction of the apoplastic barrier. J Exp Bot 65:1125–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96:2563–2605

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Chu C (2017) MicroRNAs in crop improvement: fine-tuners for complex traits. Nat Plants 3:17077

    Article  PubMed  Google Scholar 

  • Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S (2009) Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot 60:2677–2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    Article  CAS  PubMed  Google Scholar 

  • Wang Y et al (2015) Identification of radish (Raphanus sativus L.) miRNAs and their target genes to explore miRNA-mediated regulatory networks in lead (Pb) stress responses by high-throughput sequencing and degradome analysis. Plant Mol Biol Rep 33:358–376

    Article  CAS  Google Scholar 

  • Wu DZ, Sato K, Ma JF (2015) Genome-wide association mapping of cadmium accumulation in different organs of barley. New Phytol 208:817–829

    Article  CAS  PubMed  Google Scholar 

  • Wu DZ, Yamaji N, Yamane M, Kashino-Fujii M, Sato K, Ma JF (2016) The HvNramp5 transporter mediates uptake of cadmium and manganese, but not iron. Plant Physiol 172:1899–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu LY, Yu JH, Shen QF, Huang L, Wu DZ, Zhang GP (2018) Identification of microRNAs in response to aluminum stress in the roots of Tibetan wild barley and cultivated barley. BMC Genom 19:560

    Article  CAS  Google Scholar 

  • Xue M, Zhou YH, Yang ZY, Lin BY, Yuan JG, Wu SS (2014) Comparisons in subcellular and biochemical behaviors of cadmium between low-Cd and high-Cd accumulation cultivars of pakchoi (Brassica chinensis L.). Front Env Sci 8:226–238

    Article  CAS  Google Scholar 

  • Yu LJ et al (2012) Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). New Phytol 195:97–112

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Luo H (2014) Role of microRNA319 in creeping bentgrass salinity and drought stress response. Plant Signal Behav 9:e28700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou ZS, Song JB, Yang ZM (2012) Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium. J Exp Bot 63:4597–4613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Yang YC, Shen C, He CT, Yuan JG, Yang ZY (2017) Comparative analysis between low- and high-cadmium-accumulating cultivars of Brassica parachinensis to identify difference of cadmium-induced microRNA and their targets. Plant Soil 420:223–237

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (31771685, 31620103912), China Agriculture Research System (CARS-05), Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

JH Yu and DZ Wu designed the research. JH Yu, LY Wu, LB Fu, QF Shen and LH Kuang performed the research. JH Yu, GP Zhang and DZ Wu analyzed the data. JH Yu and DZ Wu wrote the article.

Corresponding author

Correspondence to Dezhi Wu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 198 KB)

Supplementary material 2 (XLSX 125 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Wu, L., Fu, L. et al. Genotypic difference of cadmium tolerance and the associated microRNAs in wild and cultivated barley. Plant Growth Regul 87, 389–401 (2019). https://doi.org/10.1007/s10725-019-00479-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-019-00479-1

Keywords

Navigation