Skip to main content

Advertisement

Log in

Transcriptomic analysis of field-grown rice (Oryza sativa L.) reveals responses to shade stress in reproductive stage

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The number of spikelets per panicle is a key factor affecting rice (Oryza sativa L.) yield, and is regulated by many different environmental cues, such as light intensity. In this study, we found that shade led to a reduction in the number of secondary branches and fewer spikelets per panicle. Rice grown in the shade had an increased spikelet degradation rate. We studied the genes that respond to shade in rice using transcriptome sequencing, which revealed that rice floral genes OsFKF1 and OsDof12 expression levels were suppressed by shading. However, Heading date 1 (Hd1), Heading date 3a (Hd3a), and Early heading date 1 (Ehd1) were induced and RICE FLOWERING LOCUS T 1 (RFT1) was suppressed without any obvious change in heading time. Furthermore, the expression level of spikelet differentiation-related genes OsFOR1, FON1, OsPBP1 and OsSPL16 were influenced by shade stress, may led to changes in spike structural. Shade affected the expression of growth-related genes that are involved in metabolism, DNA synthesis/chromatin structure, and the environmental adaptation pathway. Genes involved in chloroplast development were downregulated in leaves under shade. In addition, genes that regulate energy expenditure were suppressed by shade in both young panicles and leaves, indicating that damage to the leaf photosynthetic apparatus reduces the energetic costs of the plant. Organic synthesis-related genes were suppressed in young panicles of plants under shade, suggesting that shade slows panicle development. The identification of novel differentially expressed genes provides new insights into the effects of light deficiency on young panicle development in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adie BA, Perez-Perez J, Perez-Perez MM, Godoy M, SanchezSerrano JJ, Schmelz EA, Solano R (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19:1665–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arisnabarreta S, Miralles DJ (2008) Radiation effects on potential number of grains per spike and biomass partitioning in two- and six-rowed near isogenic barley lines. Field Crops Res 107(3):203–210

    Article  Google Scholar 

  • Browse J, Howe GA (2008) New weapons and a rapid response against insect attack. Plant Physiol 146(3):832–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Q, Yuan Z, Chen M, Yin C, Luo Z, Zhao X, Liang W, Hu J, Zhang D (2014) Jasmonic acid regulates spikelet development in rice. Nat Commun 5:3476

    PubMed  Google Scholar 

  • Chaturvedi GS, Ingram KT (1989) Growth and yield of lowland rice in response to shade and drainage. Philipp J Crop Sci 14(2):61–67

    Google Scholar 

  • Chern M, Bai W, Sze-To WH, Canlas PE, Bartley LE, Ronald PC (2012) A rice transient assay system identifies a novel domain in NRR required for interaction with NH1/OsNPR1 and inhibition of NH1-mediated transcriptional activation. Plant Methods 8(1):6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen S, Moreshet S, Guillou LL, Simon JC, Cohen M (1997) Response of citrus trees to modified radiation regime in semiarid conditions. J Exp Bot 48(306):35–44

    Article  CAS  Google Scholar 

  • Dai Y, Shen Z, Liu Y, Wang L, Hannaway D, Lu H (2009) Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environ Exp Bot 65(2–3):177–182

    Article  CAS  Google Scholar 

  • Deng F, Wang L, Yao X, Wang JJ, Ren WJ (2009) Effects of different growing-stage shading on rice grain-filling and yield. J Sichuan Agr Univ 27(3):265–269. (Chinese with English Abstract)

    Google Scholar 

  • Ding CQ, Wang Y, You SL, Liu ZH, Wang SH, Ding YF (2015) Digital gene expression analysis reveals nitrogen fertilizer increases panicle size by repressing Hd3a signaling in rice. Plant Growth Regul 79(1):47–54

    Article  Google Scholar 

  • Dorn LA, Hammond Pyle E, Schmitt J (2000) Plasticity to light cues and resources in Arabidopsis thaliana: testing for adaptive value and costs. Evolution 54(6):1982–1994

    Article  CAS  PubMed  Google Scholar 

  • Endo-Higashi N, Izawa T (2011) Flowering time genes Heading date 1 and Early heading date 1 together control panicle development in rice. Plant Cell Physiol 52(6):1083–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng L, Gao Z, Xiao G, Huang R, Zhang H (2014) Leucine-rich repeat receptor-like kinase FON1 regulates drought stress and seed germination by activating the expression of ABA-responsive genes in rice plant molecular biology reporter. Plant Mol Biol Rep 32(1):1158–1168

    Article  CAS  Google Scholar 

  • Greenwald R, Bergin MH, Xu J, Cohan D, Hoogenboom G, Chameides WL (2006) The influence of aerosols on crop production: a study using the CERES crop model. Agric Syst 89(2–3):390–413

    Article  Google Scholar 

  • Han SH, Yoo SC, Lee BD, An G, Paek NC (2015) Rice FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (OsFKF1) promotes flowering independent of photoperiod. Plant Cell Environ 38(12):2527–2540

    Article  CAS  PubMed  Google Scholar 

  • Holmes MG, Farmer AM, Bartley MR (1983) Perception of shade. Philos Trans R Soc Lond B 303:503–521

    Article  Google Scholar 

  • Janardhan KV, Murty KS, Dash NB (1980) Effects of low light during ripening period on grain yield and translocation of assimilates in rice varieties. Ind J Plant Physiol 23(2):163–168

    Google Scholar 

  • Jang S, Lee B (2003) The OsFOR1 gene encodes a polygalacturonase-inhibiting protein (PGIP) that regulates floral organ number in rice. Plant Mol Biol 53(3):357–372

    Article  CAS  PubMed  Google Scholar 

  • Jiao DM, Li X (2001) Cultivar differences in photosynthetic tolerance to photooxidation and shading in rice (Oryza sativa L.). Photosynthetica 39(2):167–175

    Article  CAS  Google Scholar 

  • Keuskamp DH, Keller MM, Ballare CL, Pierik R (2012) Blue light regulated shade avoidance. Plant Signal Behav 7(4):514–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, TW, Wang, ZY (2010) Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol 61:681–704

    Article  CAS  PubMed  Google Scholar 

  • Kim EH, Kim YS, Park SH, Koo YJ, Choi YD, Chung YY, Lee IJ, Kim JK (2009) Methyl jasmonate reduces grain yield by mediating stress signals to alter spikelet development in rice. Plant Physiol 149(4):1751–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Jiang D, Wollenweber B, Dai T, Cao W (2010) Effects of shading on morphology, physiology and grain yield of winter wheat. Eur J Agron 33(4):267–275

    Article  Google Scholar 

  • Li H, Gao Y, Xu H, Dai Y, Deng DQ, Chen J (2013a) ZmWRKY33, a WRKY maize transcription factor conferring enhanced salt stress tolerances in Arabidopsis. Plant Growth Regul 70:207

    Article  CAS  Google Scholar 

  • Li X, Zhu SD, Liu YX, Xue SY, Li WW (2013b) Multivariate statistical analysis of low-light tolerance in tomato (Solanum lycopersicum Mill.) cultivars and their ultrastructural observations. J Plant Growth Regul 32(3):646–653

    Article  Google Scholar 

  • Liu QH, Zhou XB, Yang LQ, Li T, Zhang JJ (2009) Effects of early growth stage shading on rice flag leaf physiological characters and grain growth at grain-filling stage. Chin J Appl Ecol 20(9):2135–2141. (Chinese with English Abstract)

    Google Scholar 

  • Liu J, Chen X, Liang X, Zhou X, Yang F, Liu J, He SY, Guo Z (2016) Alternative splicing of rice WRKY62 and WRKY76 transcription factor genes in pathogen defense. Plant Physiol 171(2):1427–1442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-García JF, Gallemí M, Molina-Contreras MJ, Llorente B, Bevilaqua MR, Quail PH (2014) The shade avoidance syndrome in Arabidopsis: the antagonistic role of phytochrome A and B differentiates vegetation proximity and canopy shade. Plos ONE 9:e109275

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittal D, Chakrabarti S, Sarkar A, Singh A, Grover A (2009) Heat shock factor gene family in rice: genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses. Plant Physiol Biochem 47(9):785–795

    Article  CAS  PubMed  Google Scholar 

  • Moon S, Jung KH, Lee DE, Lee DY, Lee J, An K, Kang HG, An G (2006) The rice FON1 gene controls vegetative and reproductive development by regulating shoot apical meristem size. Mol Cells 21(1):147–152

    CAS  PubMed  Google Scholar 

  • Mori M, Nomura T, Ooka H, Ishizaka M, Yokota T, Sugimoto K, Okabe K, Kajiwara H, Satoh K, Yamamoto K, Hirochika H, Kikuchi S (2002) Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiol 130(3):1152–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayak SK, Minor KS (1980) Effects of varying light intensities on yield and growth parameters in rice. Ind J Plant Physiol 23(3):309–316

    Google Scholar 

  • Pierik R, Cuppens ML, Voesenek LA, Visser EJ (2004) Interactions between ethylene and gibberellins in phytochrome-mediated shade avoidance responses in tobacco. Plant Physiol 136(2):2928–2936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Praba ML, Vanangamudi M, Thandapani V (2004) Effect of low light on yield and physiological attributes of rice. Crop Manag Physiol 29(2):71–73

    Google Scholar 

  • Qi J, Zhou G, Yang L, Erb M, Lu Y, Sun X, Cheng J, Lou Y (2011) The chloroplast-localized phospholipases D alpha4 and alpha5 regulate herbivore-induced direct and indirect defenses in rice. Plant Physiol 157(4):1987–1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radhika V, Kost C, Mithöfer A, Boland W (2010) Regulation of extrafloral nectar secretion by jasmonates in lima bean is light dependent. Proc Natl Acad Sci USA 107(40):17228–17233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren WJ, Yang WY, Xu JW, Fan GQ, Wang LY, Guan H (2002) Impact of low-light stress on leaves characteristics of rice after heading. J Sichuan Agric Univ 20(3):205–208. (Chinese with English Abstract)

    Google Scholar 

  • Riboni M, Galbiati M, Tonelli C, Conti L (2013) GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS. Plant Physiol 162(3):1706–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamm P, Kumar PP (2010) The phytohormone signal network regulating elongation growth during shade avoidance. J Exp Bot 61(11):2889–2903

    Article  CAS  PubMed  Google Scholar 

  • Valipour M (2017) Global experience on irrigation management under different scenarios. J of Water Land Dev 32(1–3):95–102

    Google Scholar 

  • Vandenbussche F, Vriezen WH, Smalle J, Laarhoven LJ, Harren FJ, Van Der Straeten D (2003) Ethylene and auxin control the Arabidopsis response to decreased light intensity. Plant Physiol 133(2):517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44(8):950–954

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Deng F, Ren WJ, Yang WY (2013) Effects of shading on starch pasting characteristics of indica hybrid rice (Oryza sativa L.). Plos ONE 8(7):e68220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XC, Wang M, Ji ZJ, Chen Z, Liu WZ, Han YH, Yang CD (2014) Functional characterization of the glycoside hydrolase encoding gene OsBE1 during chloroplast development in rice. Acta Agronomica Sinica 40(12):2090–2097. (Chinese with English Abstract)

    Article  CAS  Google Scholar 

  • Xia K, Ou X, Tang H, Wang R, Wu P, Jia Y, Wei X, Xu X, Kang SH, Kim SK, Zhang M (2015) Rice microRNA osa-miR1848 targets the obtusifoliol 14alpha-demethylase gene OsCYP51G3 and mediates the biosynthesis of phytosterols and brassinosteroids during development and in response to stress. New Phytol 208(3):790–802

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Zhang ZL, Zou X, Yang G, Komatsu S, Shen QJ (2006) Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells. Plant J 46(2):231–242

    Article  CAS  PubMed  Google Scholar 

  • Yamakawa H, Hakata M (2010) Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation. Plant Cell Physiol 51(5):795–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Zhang J, Liu K, Wang Z, Liu L (2007) Abscisic acid and ethylene interact in rice spikelets in response to water stress during meiosis. J Plant Growth Regul 26:318–328

    Article  Google Scholar 

  • Yang WQ, Lai Y, Li MN, Xu WY, Xue YB (2008) A novel C2-domain phospholipid-binding protein, OsPBP1, is required for pollen fertility in rice. Mol Plant 1(5):770–785

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Yamamoto Y, Yoshida T, Nitta Y, Miyazaki A (2000) Response of differentiated and degenerated spikelets to top-dressing, shading and day/night temperature treatments in rice cultivars with large panicles. Soil Sci Plant Nutr 46(3):631–641

    Article  Google Scholar 

  • Zhang QF (2007) Strategies for developing green super rice. PNAS 104:16402–16409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang CJ, Chu HJ, Chen GX, Shi DW, Zuo M, Wang J, Lu CG, Wang P, Chen L (2007) Photosynthetic and biochemical activities in flag leaves of a newly developed superhigh-yield hybrid rice (Oryza sativa L) and its parents during the reproductive stage. J Plant Res 120(2):209–217

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Liu A, Chen X, Zhou X, Gao G, Wang W, Zhang X (2009) Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment. J Plant Physiol 166(8):851–861

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 31401324).

Author information

Authors and Affiliations

Authors

Contributions

YW, CD, SW, and YD conceived and designed the experiments. YW, YL, and ZC performed the experiments and analyzed the data. YW and CD wrote the paper.

Corresponding author

Correspondence to Chengqiang Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 250 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Lu, Y., Chang, Z. et al. Transcriptomic analysis of field-grown rice (Oryza sativa L.) reveals responses to shade stress in reproductive stage. Plant Growth Regul 84, 583–592 (2018). https://doi.org/10.1007/s10725-017-0363-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-017-0363-3

Keywords

Navigation