Skip to main content
Log in

Brassinosteroid plays a role on pink stage for receptor and transcription factors involved in strawberry fruit ripening

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

In contrast to climacteric fruits, the ripening regulation of non-climacteric fruits is not well understood. Strawberry is a representative example of this kind of fruit, so it has been used as a model system for this category. In this study, the effect of exogenous brassinosteroid (BR) on the expression of the receptor (FaBRI1) and two components of the signaling pathway (FaBIN2 and FaBRZ1) was analyzed in Fragaria × ananassa cultivar Camino Real by quantitative real-time polymerase chain reaction (RT-qPCR). The physicochemical and phytochemical characteristics of fruits were evaluated in the field and postharvest trials. Perception and signal transduction pathway show little gene action mainly when elicited by epibrassinolide, having treatment differences due mainly the pink stage. This leads us to suggest that BR is involved in strawberry fruit ripening, where the threshold to action seems to be very low and act in the pink stage according to perception and transduction signals. However, owing to the physicochemical and phytochemical characteristics, the BR influence mainly starts in the white stage for total sugar and soluble solid in field assay and for total sugar in the postharvest assays. In addition, there is a positive effect on vitamin C content and total anthocyanins for the treated red fruits in the postharvest assay. All results show that BR is involved in strawberry fruit ripening, in different stages, mainly in a phenylpropanoid pathway. However, new assays to confirm the real BR importance on strawberry maturation and fruit quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Adapted from Asghari and Zahedipour (2016), Chai et al. (2013), Karlidag et al. (2012).

References

  • Asghari M, Zahedipour P (2016) 24-Epibrassinolide acts as a growth-promoting and resistance-mediating factor in strawberry plants. J Plant Growth Regul 35:722–729

    Article  CAS  Google Scholar 

  • Ayub RA, Bosetto L, Galvão CW, Etto RM et al (2016) Abscisic acid involvement on expression of related gene and phytochemicals during ripening in strawberry fruit Fragaria ×  ananassa cv. Camino Real. Sci Hort 203:178–184

    Article  CAS  Google Scholar 

  • Belkhadir Y, Jaillais Y (2015) The molecular circuitry of brassinosteroid signaling. New Phytol 206:522–540

    Article  CAS  PubMed  Google Scholar 

  • Bombarely A, Merchante C, Csukasi F, Cruz-Rus E et al (2010) Generation and analysis of ESTs from strawberry (Fragaria ×  ananassa) fruits and evaluation of their utility in genetic and molecular studies. BMC Genomics 11:503

    Article  PubMed  PubMed Central  Google Scholar 

  • Chai YM, Jia HF, Li CL, Dong QH et al (2011) FaPYR1 is involved in strawberry fruit ripening. J Exp Bot 62:5079–5089

    Article  CAS  PubMed  Google Scholar 

  • Chai Y, Zhang Q, Tian L, Li C-L et al (2013) Brassinosteroid is involved in strawberry fruit ripening. Plant Growth Regul 69:63–69

    Article  CAS  Google Scholar 

  • Champa WAH, Gill MIS, Mahajan BVC, Arora NK (2014) Pre-harvest treatments of brassinosteroids on improving quality of table grapes (Vitis vinifera L.) cv. Flame Seedles. Int J Agric Sc Vet Med 2:96–104

    Google Scholar 

  • Clouse SD (2011) Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell 23:1219–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cumplido-Laso G, Medina-Puche L, Moyano E, Hoffmann T et al (2012) The fruit ripening-related gene FaAAT2 encodes an acyl transferase involved in strawberry aroma biogenesis. J Exp Bot 63:4275–4290

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16(Suppl):S170-S180

    PubMed Central  Google Scholar 

  • Guo H, Li L, Aluru M, Aluru S et al (2013) Mechanisms and networks for brassinosteroid-regulated gene expression. Plant Biol 16:545–553

    CAS  Google Scholar 

  • He J, Gendron JM, Yang Y, Li J et al (2002) The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. PNAS USA 99:10185–10190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Gendron JM, Sun Y, Gampala SSL et al (2005) BZR1 Is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307:1634–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang C, Darwish O, Geretza A, Shahan R et al (2013) Genome-scale transcriptomic insights into early-stage fruit development in woodland strawberry Fragaria vesca. Plant Cell 25:1960–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlidag H, Yildirim E, Turan M (2012) Role of 24-epibrassinolide in mitigating the adverse effects of salt stress on stomatal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragaria × ananassa). Sci Hort 130:133–140

    Article  Google Scholar 

  • Lee SK, Kader AA (2000) Pre-harvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol Technol 20:207–220

    Article  CAS  Google Scholar 

  • Li J, Nam KH, Vafeados D, Chory J (2001) BIN2, a new brassinosteroid-insensitive locus in Arabidopsis. Plant Phys 127:14–22

    Article  CAS  Google Scholar 

  • Li J, Wen J, Lease KA, Doke JT et al (2002) BAK1, an Arabidopsis LRR-Receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222

    Article  CAS  PubMed  Google Scholar 

  • Li L, Li D, Luo Z, Huang X, Li X (2016) Proteomic response and quality maintenance in postharvest fruit of strawberry (Fragaria × ananassa) to exogenous cytokinin. Sci Rep 6:27094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes PZ, Fornazzari IM, Almeida AT, Galvão CW et al (2015) Effect of ethylene treatment on phytochemical and ethylene-related gene expression during ripening in strawberry fruit Fragaria ×  ananassa cv. Camino Real GMR 14:16113–16125

    Article  CAS  PubMed  Google Scholar 

  • Martínez GA, Civello PM, Chaves AR et al (2001) Characterization of peroxidase-mediated chlorophyll bleaching in strawberry fruit. Phytochemistry 58:379–387

    Article  PubMed  Google Scholar 

  • Merchante C, Vallarino JZ, Osorio S, Aragüez I et al (2013) Ethylene is involved in strawberry fruit ripening in an organ-specific manner. J Exp Bot 64:4421–4439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz C, Sánchez-Sevilla JF, Botella MA et al (2011) Polyphenol composition in the ripe fruits of Fragaria species and transcriptional analyses of key genes in the pathway. ‎J Agric Food Chem 59:12598–12604

    Article  PubMed  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara RB (2007) Vegan: community ecology package version 18-6. Available from: http://cran.r-project.org/

  • Russinova E, Borst J, Kwaaitaal M, Caño-Delgado A et al (2004) Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1). Plant Cell 16:3216–3229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Rastogi S, Dwivedi UN (2010) Phenylpropanoid metabolism in ripening fruits. Compr Rev Food Sci Food Saf 9:398–416

    Article  CAS  Google Scholar 

  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol 35:291–314

    Article  CAS  PubMed  Google Scholar 

  • Sun JH, Luo JJ, Tian L, Li CL et al (2013) New evidence for the role of ethylene in strawberry fruit ripening. J Plant Growth Regul 32:461–470

    Article  CAS  Google Scholar 

  • Symons GM, Davies C, Shavrukov Y, Dry iB et al (2006) Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Phys 140:150–158

    Article  CAS  Google Scholar 

  • Symons GM, Ghua YJ, Ross JJ, Quittenden LJ et al (2012) Hormonal changes during non-climacteric ripening in strawberry. J Exp Bot 12:2–10

    Google Scholar 

  • Team Development Core, R. (2007) A language and environment for statistical computing. R Foundation for statistical computing. Vienna. Available in http://www.R-project.org/

  • Valero D, Serrano M (2010) Fruit ripening. In: Valero D, Serrano M (eds) Postharvest biology and technology for preserving fruit quality, 1st edn. CRC press, New York, pp 7–42

    Chapter  Google Scholar 

  • Vidya Vardhini B, Rao SS (2002) Acceleration of ripening of tomato pericarp discs by brassinosteroids. Phytochemistry 61:843–847

    Article  CAS  PubMed  Google Scholar 

  • Villarreal NM, Bustamante CA, Civello PM et al (2010) Effect of ethylene and 1-MCP treatments on strawberry fruit ripening. J Sci Food Agric 90:683–689

    CAS  PubMed  Google Scholar 

  • Wang X, Chory J (2006) Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science 313:1118–1122

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Nakano T, Gendron J, He J et al (2002) Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell 2:505–513

    Article  CAS  PubMed  Google Scholar 

  • Xi Z, Zhang Z, Huo S et al (2013) Regulating the secondary metabolism in grape berry using exogenous 24-epibrassinolide for enhanced phenolics content and antioxidant capacity. Food Chem 141:3056–3065

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Gao X, Xi Z, Zhang H et al (2015) Application of exogenous 24-epibrassinolide enhances proanthocyanidin biosynthesis in Vitis vinifera ‘Cabernet Sauvignon’ berry skin. Plant Growth Regul 75:741–750

    Article  CAS  Google Scholar 

  • Yang G, Komatsu S (2004) Microarray and proteomic analysis of brassinosteroid- and gibberellin-regulated gene and protein expression in rice. Genom Proteom Bioinform 2:77–83

    Article  CAS  Google Scholar 

  • Yin Y, Wang Z, Mora-Garcia S, Li J et al (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109:181–191

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Vafeados D, Tao Y, Yoshida S et al (2005) A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell 120:249–259

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Wang HQ, Len P et al (2008) Mechanism of anthocyanins and flavonols in fruit development of strawberries. Acta Hortic 35:1735–1741

    CAS  Google Scholar 

  • Zhu T, Tan W-R, Deng X-G et al (2015) Effects of brassinosteroids on quality attributes and ethylene synthesis in postharvest tomato fruit. Postharvest Biol Technol 100:196–204

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research support by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação Araucária, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and to Universidade Estadual de Ponta Grossa (UEPG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Ayub.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 182 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayub, R.A., Reis, L., Bosetto, L. et al. Brassinosteroid plays a role on pink stage for receptor and transcription factors involved in strawberry fruit ripening. Plant Growth Regul 84, 159–167 (2018). https://doi.org/10.1007/s10725-017-0329-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-017-0329-5

Keywords

Navigation