Skip to main content
Log in

Characterization and expression analysis of cytokinin biosynthesis genes in Fragaria vesca

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Strawberry is one of the most economically important fruit crops in the world. Cytokinins (CKs) play a critical role in plant growth and development, as well as the stress response, and the level of CKs in plants is regulated by synthesis and degradation pathways. The key synthetic enzymes of CKs are isopentenyl transferases (IPTs) and LONELY GUYS (LOGs). We surveyed the strawberry genome and identified seven FvIPT genes and nine FvLOG genes. We analyzed gene structures, conserved domains, and their phylogenetic relationships with rice and Arabidopsis. The isoelectric points and glycosylation sites of the proteins were predicted. We also analyzed tissue- or organ-specific expression patterns of the FvIPT and FvLOG genes. The FvIPT and FvLOG genes showed different expression profiles in different organs. Most FvIPT and FvLOG genes were down-regulated in response to osmotic stress, high-temperature treatment, and exogenous abscisic acid (ABA) application, suggesting possible roles of these genes in the plants’ resistance to abiotic stresses. In addition, we found that the results of bioinformatics analyses to identify cis-regulatory elements may not be consistent with experimental expression data; thus, computer-predicted putative cis-elements need to be confirmed by experiments. Our systematic analyses of the FvIPT and FvLOG families provide a foundation for characterizing the function of these genes in the regulation of growth, development, and stress tolerance in Fragaria vesca, as well as a reference for improving stress tolerance by manipulating CK content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amil-Ruiz F, Garrido-Gala J, Blanco-Portales R, Folta KM, Muñoz-Blanco J, Caballero JL (2013) Identification and validation of reference genes for transcript normalization in strawberry (Fragaria × ananassa) defense responses. PLoS ONE 8:e70603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beveridge C, Murfet I, Kerhoas L, Sotta B, Miginiac E, Rameau C (1997) The shoot controls zeatin riboside export from pea roots. Evidence from the branching mutant rms4. Plant J 11:339–345

    Article  CAS  Google Scholar 

  • Chandler JW, Werr W (2015) Cytokinin-auxin crosstalk in cell type specification. Trends Plant Sci 20:291–300

    Article  CAS  PubMed  Google Scholar 

  • Frébort I, Kowalska M, Hluska T, Frébortová J, Galuszka P (2011) Evolution of cytokinin biosynthesis and degradation. J Exp Bot 62:2431–2452

    Article  PubMed  Google Scholar 

  • Galuszka P, Popelková H, Werner T, Frébortová J, Pospíšilová H, Mik V, Köllmer I, Schmülling T, Frébort I (2007) Biochemical characterization of cytokinin oxidases/dehydrogenases from Arabidopsis thaliana expressed in Nicotianatabacum L. J Plant Growth Regul 26:255–267

    Article  CAS  Google Scholar 

  • Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran L (2012) Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci 17:172–179

    Article  CAS  PubMed  Google Scholar 

  • Hare P, Cress W, van Staden J (1997) The involvement of cytokinins in plant responses to environmental stress. Plant Growth Regul 23:79–103

    Article  CAS  Google Scholar 

  • Havlová M, Dobrev PI, Motyka V, Storchová H, Libus J, Dobrá J, Malbeck J, Gaudinová A, Vanková R (2008) The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under 35 S or SAG12 promoters. Plant Cell Environ 31:341–353

    Article  PubMed  Google Scholar 

  • Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H (2008) Regulation of cytokinin biosynthesis, compartmentalization and translocation. J Exp Bot 59:75–83

    Article  CAS  PubMed  Google Scholar 

  • Immanen J, Nieminen K, Duchens SH, Rodriguez RF, Meisel LA, Silva H, Albert VA, Hvidsten TR, Helariutta Y (2013) Characterization of cytokinin signaling and homeostasis gene families in two hardwood tree species: Populus trichocarpa and Prunus persica. BMC Genom 14:885

    Article  Google Scholar 

  • Kamada-Nobusada T, Sakakibara H (2009) Molecular basis for cytokinin biosynthesis. Phytochemistry 70:444–449

    Article  CAS  PubMed  Google Scholar 

  • Kang C, Darwish O, Geretz A, Shahan R, Alkharouf N, Liu Z (2013) Genome-scale transcriptomic insights into early-stage fruit development in woodland strawberry Fragaria vesca. Plant Cell 25:1960–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kieber JJ, Schaller GE (2014) Cytokinins. Arabidopsis Book 12:e0168

    Article  PubMed  PubMed Central  Google Scholar 

  • Kudo T, Kiba T, Sakakibara H (2010) Metabolism and long-distance translocation of cytokinins. J Integr Plant Biol 52:53–60

    Article  CAS  PubMed  Google Scholar 

  • Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445:652–655

    Article  CAS  PubMed  Google Scholar 

  • Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, Nagawa S, Fukuda H, Sugimoto K, Sakakibara H (2009) Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21:3152–3169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Herrera-Estrella L, Tran LS (2016) The yin-yang of cytokinin homeostasis and drought acclimation/adaptation. Trends Plant Sci 21:548–550

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔC T method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lomin SN, Krivosheev DM, Steklov MY, Arkhipov DV, Osolodkin DI, Schmülling T, Romanov DV (2015) Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. J Exp Bot 66:1851–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyl transferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 37:128–138

    Article  CAS  PubMed  Google Scholar 

  • Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T (2006) Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc Natl Acad Sci USA 103:16598–16603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23:2169–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien JA, Benková E (2013) Cytokinin cross-talking during biotic and abiotic stress responses. Front Plant Sci 4:451

    PubMed  PubMed Central  Google Scholar 

  • Olczak M, Morawiecka B, Watorek W (2003) Plant purple acid phosphatases - genes, structures and biological function. Acta Biochim Pol 50:1245–1256

    CAS  PubMed  Google Scholar 

  • Pinto MaS, de Carvalho JE, Lajolo FM, Genovese MI, Shetty K (2010) Evaluation of antiproliferative, anti-type 2 diabetes, and antihypertension potentials of ellagitannins from strawberries (Fragaria × ananassa Duch.) using in vitro models. J Med Food 13:1027–1035

    Article  Google Scholar 

  • Rivero R, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA 104:19631–19636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–444

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Sakakibara H, Kojima M, Yamamoto Y, Nagasaki H, Inukai Y, Sato Y, Matsuoka M (2006) Ectopic expression of KNOTTED1-like homeobox protein induces expression of cytokinin biosynthesis genes in rice. Plant Physiol 142:54–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaller GE, Bishopp A, Kieber JJ (2015) The yin-yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell 27:44–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116

    Article  CAS  PubMed  Google Scholar 

  • Spichal L, Rakova NY, Riefler M, Mizuno T, Romanov GA, Strnad M, Schmulling T (2004) Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol 45:1299–1305

    Article  CAS  PubMed  Google Scholar 

  • Takagi M, Yokota T, Murofushi N, Ota Y, Takahashi N (1985) Fluctuation of endogenous cytokinin contents in rice during its life cycle-quantification of cytokinins by selected ion monitoring using deuterium-labelled internal standards. Agric Biol Chem 49:3271–3277

    CAS  Google Scholar 

  • Takei K, Sakakibara H, Sugiyama T (2001) Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. J Biol Chem 276:26405–26410

    Article  CAS  PubMed  Google Scholar 

  • Takei K, Yamaya T, Sakakibara H (2004) Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-Zeatin. J Biol Chem 279:41866–41872

    Article  CAS  PubMed  Google Scholar 

  • Tokunaga H, Kojima M, Kuroha T, Ishida T, Sugimoto K, Kiba T, Sakakibara H (2012) Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOG-dependent pathway in cytokinin activation. Plant J 69:355–365

    Article  CAS  PubMed  Google Scholar 

  • Tran L, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci USA 104:20623–20628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran H, Hurley B, Plaxton W (2010) Feeding hungry plants: The role of purple acid phosphatases in phosphate nutrition. Plant Sci 179:14–27

    Article  CAS  Google Scholar 

  • Tsai YC, Weir NR, Hill K, Zhang W (2012) Characterization of genes involved in cytokinin signaling and metabolism from rice. Plant Physiol 158:1666–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaseva I, Todorova D, Malbeck J, Travnıckova A, Machackova I (2008) Response of cytokinin pool and cytokinin oxidase/dehydrogenase activity to abscisic acid exhibits organ specificity in peas. Acta Physiol Plant 30:151–155

    Article  CAS  Google Scholar 

  • Vyroubalova S, Vaclavikova K, Tureckova V, Novak O, Smehilova M, Hluska T, Ohnoutkova L, Frebort I, Galuszka P (2009) Characterization of new maize genes putatively involved in cytokinin metabolism and their expression during osmotic stress in relation to cytokinin levels. Plant Physiol 151:433–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yevdakova NA, Von SK (2007) Characterisation of a prokaryote-type tRNA-isopentenyltransferase gene from the moss Physcomitrella patens. Planta 226:683–695

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Seeram NP, Lee R, Feng L, Heber D (2008) Isolation and identification of strawberry phenolics with antioxidant and human cancer cell antiproliferative properties. J Agric Food Chem 56:670–675

    Article  CAS  PubMed  Google Scholar 

  • Zhu YD, Jin YS, Wei S, Li H, Zhang W (2012) Functional analysis of the isopentenyltransferase gene MdIPT3a from apple (Malus pumila Mill.). J Hortic Sci Biotechnol 87:478–484

    Article  CAS  Google Scholar 

  • Zwack PJ, Rashotte AM (2015) Interactions between cytokinin signalling and abiotic stress responses. J Exp Bot 66:4863–4871

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (31471860 and 31672124), and the Open Project of State Key Laboratory of Crop Genetics and Germplasm Enhancement (ZW2014008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijun Gan or Jing Ding.

Ethics declarations

Conflict of interest

All authors read and agreed with the final manuscript and have no conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, X., Wang, X., Wu, H. et al. Characterization and expression analysis of cytokinin biosynthesis genes in Fragaria vesca . Plant Growth Regul 82, 139–149 (2017). https://doi.org/10.1007/s10725-016-0246-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-016-0246-z

Keywords

Navigation