Skip to main content
Log in

Dynamics of abscisic acid and indole-3-acetic acid during the early-middle stage of seed development in Rosa hybrida

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Concentrations of endogenous abscisic acid (ABA) and indole-3-acetic acid (IAA) in Rosa hybrida seed coat and embryos were determined at 28, 35, 42, and 49 days after pollination (DAP), a period encompassing the early-middle stages of seed development. No studies on rose have ever documented simultaneous change in ABA and IAA during these developmental phases in both seed coat and embryo. Plant growth regulators were extracted and then quantified by using high performance liquid chromatography based on solid phase extraction purification. In both the seed coat and embryo, ABA content decreased from 28 DAP (4.39 and 1.36 pmol mg−1, respectively) and onward. Endogenous IAA in seed coat followed the same trend. In contrast, IAA in embryo began to increase at 28 DAP (2.06 pmol mg−1), peaked at 42 DAP (5.06 pmol mg−1), and then declined dramatically at 49 DAP (1.17 pmol mg−1). In embryo, the IAA/ABA ratio was always >1.0 and showed a tendency to increase from 28 DAP to the maximum significant rate at 42 DAP (9.20). The ABA decrease associated with increased IAA levels in embryo could be a result of crosstalk between these two phytohormones. Such a change in the IAA/ABA ratio may signal the end of endodormancy caused by ABA at the pre-cotyledonary stage and the start of increased embryo cell division during the cotyledonary stage, which also results in increased hip weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali-Rachedi S, Bouinot D, Wagner MH, Bonnet M, Sotta B, Grappin P, Jullien M (2004) Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219:479–488

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Ravishankar GA (2002) Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tissue Organ Cult 69:1–34

    Article  CAS  Google Scholar 

  • Balbuena TS, Jo L, Pieruzzi FP, Dias LLC, Silveira V, Santa-Catarina C, Junqueira M, Thelen JJ, Shevchenko A, Floh EIS (2011) Differential proteome analysis of mature and germinated embryos of Araucaria angustifolia. Phytochemistry 72:302–311

    Article  CAS  PubMed  Google Scholar 

  • Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Sci Res 14:1–16

    Google Scholar 

  • Bo J, Huiru D, Xiaohan Y (1995) Shortening hybridization breeding cycle of rose: a study on mechanisms controlling achene dormancy. Acta Hortic 404:40–47

    Google Scholar 

  • Bosco R, Caser M, Vanara F, Scariot V (2013) Development of a rapid LC/DAD/FLD method for the simultaneous determination of auxins and abscisic acid in plant extracts. J Agric Food Chem 61:10940–10947

    Article  CAS  PubMed  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125

    Article  CAS  Google Scholar 

  • Brownfield DL, Todd CD, Stone SL, Deyholos MK, Gifford DJ (2007) Patterns of storage protein and triacylglycerol accumulation during loblolly pine somatic embryo maturation. Plant Cell Tissue Organ Cult 88:217–223

    Article  CAS  Google Scholar 

  • Caser M, Pipino L, Van Labeke MC, Mansuino A, Giovannini A, Scariot V (2011) Immature seed rescue and abscisic acid quantification in Rosa hybrida L. suggest early and transient endodormancy. Acta Hortic 961:593–598

    Google Scholar 

  • Dewar J, Taylor JRN, Berjak P (1998) Changes in selected plant growth regulators during germination in sorghum. Seed Sci Res 8:1–8

    Article  CAS  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    Article  CAS  PubMed  Google Scholar 

  • Fischer-Iglesias C, Sundberg B, Neuhaus G, Jones AM (2001) Auxin distribution and transport during embryonic pattern formation in wheat. Plant J 26:115–129

    Article  CAS  PubMed  Google Scholar 

  • Guan LM, Scandalios JG (2002) Catalase gene expression in response to auxin-mediated developmental signals. Physiol Plant 2:288–295

    Article  Google Scholar 

  • Gudin S (1994) Embryo rescue in Rosa hybrida L. Euphytica 72:205–212

    Article  Google Scholar 

  • Gutierrez L, Van Wuytswinkel O, Castelain M, Bellini C (2007) Combined networks regulating seed maturation. Trends Plant Sci 12:294–300

    Article  CAS  PubMed  Google Scholar 

  • Guzicka M, Zielinski J, Tomaszewski D, Gawlak M (2012) Anatomical study on the developing pericarp of selected Rosa species (Rosaceae). Dendrobiology 68:77–87

    Google Scholar 

  • Hein MB, Brenner ML, Brun WA (1984) Concentrations of abscisic acid and indole-3-acetic acid in Soybean seeds during development. Plant Physiol 76:951–954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kanno Y, Jikumaru Y, Hanada A, Nambara E, Abrams SR, Kamiya Y, Seo M (2010) Comprehensive hormone profiling in developing Arabidopsis seeds: examination of the site of ABA biosynthesis, ABA transport and hormone interactions. Plant Cell Physiol 51:1988–2001

    Article  CAS  PubMed  Google Scholar 

  • Koukourikou-Petridou M, Porlingis I (2001) Changes in the levels of free and conjugated indole-3-acetic acid in almond fruits during development. Adv Hortic Sci 14:65–70

    Google Scholar 

  • Kucera B, Cohn A, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307

    Article  CAS  Google Scholar 

  • Kumar R, Dohare SR, Nath V, Dureja P (1985) Levels of endogenous ABA, GA3 and IAA in achenes of Rosa hybrida. Ornam Hortic 2:60–62

    Google Scholar 

  • Lee TD (1988) Patterns of fruit and seed production. In: Doust JL, Doust LL (eds) Plant reproductive ecology: patterns and strategies. Oxford University Press, Oxford, pp 179–202

    Google Scholar 

  • Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC (2007) Repression of auxin response factor10 by microRNA160 is critical for seed germination and postgermination stages. Plant J 52:133–146

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Liang Z, Wu H, Huang L, Wang Z (2010) Role of endogenous hormones, glumes, endosperm and temperature on germination of Leymus chinensis (Poaceae) seeds during development. J Plant Ecol 3:269–277

    Article  Google Scholar 

  • Meinke DW (1995) Molecular-genetics of plant embryogenesis. Annu Rev Plant Physiol 46:369–394

    Article  CAS  Google Scholar 

  • Moller B, Weijers D (2009) Auxin control of embryo patterning. Cold Spring Harb Perspect Biol 1:a001545

    Article  PubMed Central  PubMed  Google Scholar 

  • Pipino L, Leus L, Scariot V, Van Labeke MC (2013) Embryo and hip development in hybrid roses. Plant Growth Regul 69:107–116

    Article  CAS  Google Scholar 

  • Preston J, Tatematsu K, Kanno Y, Hobo T, Kimura M, Jikumaru Y, Yano R, Kamiya Y, Nambara E (2009) Temporal expression patterns of hormone metabolism genes during imbibitions of Arabidopsis thaliana seeds: a comparative study on dormant and non-dormant accessions. Plant Cell Physiol 50:1786–1800

    Article  CAS  PubMed  Google Scholar 

  • Ramaih S, Guedira M, Paulsen GM (2003) Relationship of indoleacetic acid and tryptophan to dormancy and preharvest sprouting of wheat. Funct Plant Biol 30:939–945

  • Raz V, Bergervoet JH, Koornneef M (2001) Sequential steps for developmental arrest in Arabidopsis seeds. Development 128:243–252

    CAS  PubMed  Google Scholar 

  • Silveira V, Balbuena TS, Santa-Catarina C, Floh EIS, Guerra MP, Handro W (2004) Biochemical changes during seed development in Pinus taeda L. Plant Growth Regul 44:147–156

    Article  CAS  Google Scholar 

  • Stone SL, Braybrook SA, Paula SL, Kwong LW, Meuser J, Pelletier J, Hsieh TF, Fischer RL, Goldberg RB, Harada JJ (2008) Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: implications for somatic embryogenesis. Proc Natl Acad Sci USA 105:3151–3156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Article  CAS  PubMed  Google Scholar 

  • Tilberg E (1984) Levels of endogenous indole-3-acetic acid in achenes of Rosa rugosa during dormancy release and germination. Plant Physiol 76:84–87

    Article  Google Scholar 

  • Tromas A, Perrot-Rechenmann C (2010) Recent progress in auxin biology. CR Biol 333:297–306

    Article  CAS  Google Scholar 

  • Wan CY, Han MY, Mi L, Zhao CP, Xu JT, Yang YL, Li GP (2009) Factors on the seed embryos degradation of early-ripening peach (Prunus persica L.). Acta Agric Boreali-Occidentalis Sinica 01

  • Yambe Y, Hori Y, Takeno K (1992) Levels of endogenous abscisic acid in rose achenes and leaching with activated charcoal to improve seed germination. J Jpn Soc Hortic Sci 61:383–387

    Article  CAS  Google Scholar 

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zlesak DC (2006) Rose. Rosa x hybrida. In: Anderson NO (ed) Flower breeding and genetics. Springer, Dordrecht, pp 695–740

Download references

Acknowledgments

This research was funded by the Italian Ministry of Agriculture, Project 11058/7643/2009 “Studio sulla compatibilità all’incrocio ed individuazione di marcatori della fertilità in cultivar commerciali di rosa al fine di ottimizzare il lavoro di ibridazione e la costituzione varietale (FERTROS).” The authors gratefully acknowledge the entire NIRP International staff for supplying rose hips and Francesca Vanara for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Scariot.

Additional information

Renato Bosco and Matteo Caser have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosco, R., Caser, M., Ghione, G.G. et al. Dynamics of abscisic acid and indole-3-acetic acid during the early-middle stage of seed development in Rosa hybrida . Plant Growth Regul 75, 265–270 (2015). https://doi.org/10.1007/s10725-014-9950-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-014-9950-8

Keywords

Navigation