Skip to main content
Log in

1-Butanol triggers programmed cell death in Populus euphratica cell cultures

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

1-Butanol, which is a specific inhibitor of phospholipase D, usually inhibits phosphatidic acid (PA) production and blocks the PA-dependent signaling pathway under stress conditions. However, the effects of 1-butanol on plant cells under non-stress condition are still unclear. In this study, we report that 1-butanol induced a dose dependent cell death in poplar (Populus euphratica) cell cultures. In contrast, the control 2-butanol and ethanol had no effects on cell viability. 1-Butanol-treated cells displayed hallmark features of programmed cell death (PCD), such as shrinkage of the cytoplasm, DNA fragmentation, condensed or stretched chromatin and the activation of caspase-3-like protease. Exogenous application of PA markedly inhibited the 1-butanol-induced PCD. 1-Butanol also caused a burst of mitochondrial H2O2 ([H2O2]mit) that was usually accompanied by a loss of mitochondrial membrane potential (∆Ψm). Supplement of PA, antioxidant enzyme (catalase) and antioxidant (ascorbic acid) reversed this effect. Moreover, a significant increase of nitric oxide (NO) was observed in 1-butanol-treated poplar cells. This NO burst was suppressed by PA or inhibitors of NO synthesis. Further pharmacological experiments indicate that the burst of NO contributed to the 1-butanol-induced inhibition of antioxidant enzymes and subsequent H2O2-dependent PCD. In conclusion, we propose that 1-butanol is a potent inducer of PCD in plants and this process is regulated by the PA, NO and H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PLD:

Phospholipase D

PA:

Phosphatidic acid

PCD:

Programmed cell death

[H2O2]mit :

Mitochondrial H2O2

Ψm:

Mitochondrial membrane potential

CAT:

Catalase

ASA:

Ascorbic acid

NO:

Nitric oxide

GR:

Glutathione reductase

APX:

Ascorbate peroxidase

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Beligni MV, Fath A, Bethke PC, Lamattina L, Jones RL (2002) Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol 129:1642–1650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Ramírez A, López-Bucio J, Ramírez-Pimentel JG, Zurita-Silva A, Sánchez-Calderón L, Ramírez-Chávez E, González-Ortega E, Herrera-Estrella L (2004) The xipotl mutant of Arabidopsis reveals a critical role for phospholipid metabolism in root system development and epidermal cell integrity. Plant Cell 16:2020–2034

    Article  PubMed Central  PubMed  Google Scholar 

  • Darwish E, Testerink C, Khaleil M, El-Shihy O, Munnik T (2009) Phospholipid-signaling responses in salt-stressed rice leaves. Plant Cell Physiol 50:986–997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dat JF, Pellinen R, Beeckman T, Van De Cotte B, Langebartels C, Kangasjärvi J, Inzé D, Van Breusegem F (2003) Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J 33:621–632

    Article  CAS  PubMed  Google Scholar 

  • De Michele R, Vurro E, Rigo C, Costa A et al (2009) Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures. Plant Physiol 150(21):7–228

    Google Scholar 

  • de Pinto MC, Locato V, De Gara L (2012) Redox regulation in plant programmed cell death. Plant Cell Environ 35:234–244

    Article  PubMed  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA 98:13454–13459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123:1468–1479

    Article  CAS  PubMed  Google Scholar 

  • Dhonukshe P, Laxalt AM, Goedhart J, Gadella TW, Munnik T (2003) Phospholipase D activation correlates with microtubule reorganization in living plant cells. Plant Cell 15:2666–2679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fan L, Zheng SQ, Wang XM (1997) Antisense suppression of phospholipase D alpha retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell 9:2183–2196

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gardiner J, Collings DA, Harper JD, Marc J (2003) The effects of the phospholipase D-antagonist 1-butanol on seedling development and microtubule organisation in Arabidopsis. Plant Cell Physiol 44:687–696

    Article  CAS  PubMed  Google Scholar 

  • Gechev TS, Hille J (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol 168:17–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Green DR (1998) Apoptotic pathways: the roads to ruin. Cell 94:695–698

    Article  CAS  PubMed  Google Scholar 

  • Guo FQ, Crawford NM (2005) Arabidopsis nitric oxide synthase 1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell 17:3436–3450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirase A, Hamada T, Itoh TJ, Shimmen T, Sonobe S (2006) n-Butanol induces depolymerization of microtubules in vivo and in vitro. Plant Cell Physiol 47:1004–1009

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Pan X, Welti R, Wang X (2008) Phospholipase Dα3 is involved in the hyperosmotic response in Arabidopsis. Plant Cell 20:803–816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hong Y, Zhang W, Wang X (2010) Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity. Plant Cell Environ 33:627–635

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Zhang J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410

    Article  CAS  PubMed  Google Scholar 

  • Krzymowska M, Konopka-Postupolska D, Sobczak M, Macioszek V, Ellis BE, Hennig J (2007) Infection of tobacco with different Pseudomonas syringae pathovars leads to distinct morphotypes of programmed cell death. Plant J 50:253–264

    Article  CAS  PubMed  Google Scholar 

  • Lachaud C, Silva DD, Cotelle V et al (2010) Nuclear calcium controls the apoptotic-like cell death induced by D-erythro-sphinganine in tobacco cell. Cell Calcium 47:92–100

    Article  CAS  PubMed  Google Scholar 

  • Langhans M, Robinson DG (2007) 1-butanol targets the Golgi apparatus in tobacco BY-2 cells, but in a different way to Brefeldin A. J Exp Bot 58:3439–3447

    Article  CAS  PubMed  Google Scholar 

  • Laxalt AM, Ter Riet B, Verdonk JC, Parigi L, Tameling WIL, Vossen J, Haring M, Musgrave A, Munnik T (2001) Characteization of five tomato phospholiase D cDNAs: rapid and specific expression of LePLDβ1 on elicitation with xylanase. Plant J 26:237–247

    Article  CAS  PubMed  Google Scholar 

  • Laxalt AM, Raho N, Ten Have A, Lamattina L (2007) Nitric oxide is critical for inducing phosphatidic acid accumulation in xylanase-elicited tomato cells. J Biol Chem 282:21160–21168

    Article  CAS  PubMed  Google Scholar 

  • Leshem Y, Melamed-Book N, Cagnac O, Ronen G, Nishri Y, Solomon M, Cohen G, Levine A (2006) Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased salt tolerance. Proc Nati Acad Sci USA 103:18008–18013

    Article  CAS  Google Scholar 

  • Li G, Xue HW (2007) Arabidopsis PLDζ2 regulates vesicle trafficking and is required for auxin response. Plant Cell 19:281–295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li W, Li M, Zhang W, Welti R, Wang X (2004) The plasma membrane-bound phospholipase Dδ enhances freezing tolerance in Arabidopsis thaliana. Nat Biotech 22:427–433

    Article  Google Scholar 

  • Lin A, Wang Y, Tang J, Xue P, Li C, Liu L, Hu B, Yang F, Loake GJ, Chu C (2012) Nitric oxide and protein s-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol 158:451–464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Q, Zhang C, Yang Y, Hu X (2010) Genome-wide and molecular evolution analyses of the phospholipase D gene family in Poplar and Grape. BMC Plant Biol 10:117

    Article  PubMed Central  PubMed  Google Scholar 

  • Mishra G, Zhang W, Deng F, Zhao J, Wang X (2006) A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 312(26):4–266

    Google Scholar 

  • Munnik T, Arisz SA, de Vrije T, Musgrave A (1995) G protein activation stimulates phospholipase D signaling in plants. Plant Cell 7:2197–2210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Munnik T, Meijer HJG, ter Riet B, Hirt H, Frank W, Bartels D, Musgrave A (2000) Hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate. Plant J 22:147–154

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Ohashi Y, Oka A, Rodrigues-Pousada R, Possenti M, Ruberti I, Morelli G, Aoyama T (2003) Modulation of phospholipid signaling by GLABRA2 in root hair pattern formation. Science 300:1427–1430

    Article  CAS  PubMed  Google Scholar 

  • Peters NT, Logan KO, Miller AC, Kropf DL (2007) Phospholipase D signalling regulates microtubule organization in the fucoid alga Silvetia compressa. Plant Cell Physiol 48:1764–1774

    Article  CAS  PubMed  Google Scholar 

  • Raho N, Ramirez L, Lanteri ML, Gonorazky G, Lamattina L, Ten Have A et al (2011) Phosphatidic acid production in chitosan-elicited tomato cells via both phospholipase D and phospholipase C/diacylglycerol kinase requires nitric oxide. J Plant Physiol 168:534–539

    Article  CAS  PubMed  Google Scholar 

  • Reape TJ, McCabe PF (2008) Apoptotic-like programmed cell death in plants. New Phytol 180:13–26

    Article  CAS  PubMed  Google Scholar 

  • Reape TJ, McCabe PF (2010) Apoptotic-like regulation of programmed cell death in plants. Apoptosis 15:249–256

    Article  CAS  PubMed  Google Scholar 

  • Reape TJ, Molony EM, McCabe PF (2008) Programmed cell death in plants: distinguishing different models. J Exp Bot 59:435–444

    Article  CAS  PubMed  Google Scholar 

  • Schaedle M, Bassham JA (1977) Chloroplast glutathione reductase. Plant Physiol 59:1011–1012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Su Y, Edwards-Bennett S, Bubb MR, Block ER (2003) Regulation of endothelial nitric oxide synthase by the actin cytoskeleton. Am J Physiol Cell Physiol 284:C1542–C1549

    Article  CAS  PubMed  Google Scholar 

  • Sueldo DJ, Foresi NP, Casalongue CA, Lamattina L, Laxalt AM (2010) Phosphatidic acid formation is required for extracellular ATP-mediated nitric oxide production in suspension-cultured tomato cells. New Phytol 185:909–916

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Wang M, Ding M, Deng S, Liu M, Lu C, Zhou X, Shen X, Zheng X, Zhang Z, Song J, Hu Z, Xu Y, Chen S (2010a) H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells. Plant Cell Environ 33:943–958

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Li L, Liu M et al (2010b) Hydrogen peroxide and nitric oxide mediate K+/Na+ homeostasis and antioxidant defense in NaCl-stressed callus cells of two contrasting poplars. Plant Cell Tiss Organ Cult 103:205–215

    Article  CAS  Google Scholar 

  • Sun J, Zhang C, Deng S, Lu C, Shen X, Zheng X, Chen S (2012) An ATP signaling pathway in plant cells: extracellular ATP triggers programmed cell death in Populus euphratica. Plant Cell Environ 35:893–916

    Article  PubMed  Google Scholar 

  • Takemiya A, Shimazaki K (2010) Phosphatidic acid inhibits blue light-induced stomatal opening via inhibition of protein phosphatase 1. Plant Physiol 153:1555–1562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Testerink C, Munnik T (2011) Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. J Exp Bot 62:2349–2361

    Article  CAS  PubMed  Google Scholar 

  • Thomas SG, Franklin-Tong VE (2004) Self-incompatibility triggers programmed cell death in Papaver pollen. Nature 429:305–309

    Article  CAS  PubMed  Google Scholar 

  • Vacca RA, de Pinto MC, Valenti D, Passerella S, Marra E, De Gara L (2004) Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco Bright-Yellow 2 cells. Plant Physiol 134:1100–1112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vacca RA, Valenti D, Bobba A, Merafina RS, Passarella S, Marra E (2006) Cytochrome c is released in a reactive oxygen species-dependent manner and is degraded via caspase-like proteases in tobacco Bright-Yellow 2 cells enroute to heat shock-induced cell death. Plant Physiol 141:208–219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390

    Article  PubMed Central  PubMed  Google Scholar 

  • Vianello A, Zancani M, Peresson C, Petrussa E, Casolo V, Kra-jnakova J, Patui S, Braidot E, Macri F (2007) Plant mitochondrial pathway leading to programmed cell death. Physiol Plant 129:242–252

    Article  CAS  Google Scholar 

  • Virolainen E, Blokhina O, Fagerstedt K (2002) Ca2+-induced high amplitude swelling and cytochrome c release from wheat (Triticum aestivum L.) mitochondria under anoxic stress. Ann Bot 90:509–516

    Article  CAS  PubMed  Google Scholar 

  • Wang X (2005) Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses. Plant Physiol 139:566–573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Li X, Liu Y, Zhao X (2010a) Salt stress induces programmed cell death in Thellungiella halophila suspension-cultured cells. J Plant Physiol 167:1145–1151

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chen C, Loake GJ, Chu C (2010b) Nitric oxide: promoter or suppressor of programmed cell death? Protein Cell 1:133–142

    Article  CAS  PubMed  Google Scholar 

  • Wilkins KA, Bancroft J, Bosch M, Ings J, Smirnoff N, Franklin-Tong VE (2011) Reactive oxygen species and nitric oxide mediate actin reorganization and programmed cell death in the self-incompatibility response of papaver. Plant Physiol 156:404–416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi T, Tanabe S, Minami E, Shibuya N (2004) Activation of phospholipase D induced by hydrogen peroxide in suspension-cultured rice cells. Plant Cell Physiol 45:1261–1270

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Minami E, Ueki J, Shibuya N (2005) Elicitor-induced activation of phospholipases plays an important role for the induction of defense responses in suspension-cultured rice cells. Plant Cell Physiol 46:579–587

    Article  CAS  PubMed  Google Scholar 

  • Yao N, Greenberg JT (2006) Arabidopsis ACCELERATED CELL DEATH2 modulates programmed cell death. Plant Cell 18:397–411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yao N, Eisfelder BJ, Marvin J, Greengerg J (2004) The mitochondrion-an organelle commonly involved in programmed cell death in Arabidopsis thaliana. Plant J 40:596–610

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Wang C, Qin C, Wood T, Olafsdottir G, Welti R, Wang X (2003) The oleate-stimulated phospholipase D, PLDδ, and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis. Plant Cell 15:2285–2295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Zhu H, Zhang Q, Li M, Yan M, Wang R, Wang L, Welti R, Zhang W, Wang X (2009) Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell 21:2357–2377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported jointly by the Scientific Research Support Project for Teachers with Doctor’s Degree, Jiangsu Normal University, China (No. 11XLR23); the National Science Foundation of China (Grant No. 31200470); the Natural Science Fund for Colleges and Universities in Jiangsu Province (No. 12KJB180003); the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the National Major Special Project for the Development of Transgenic Organisms (2014ZX08012-002, 2011ZX08012-002) and the Scientific Research Projects of Xuzhou (No. XF13C056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Yu, Y., Li, Z. et al. 1-Butanol triggers programmed cell death in Populus euphratica cell cultures. Plant Growth Regul 74, 33–45 (2014). https://doi.org/10.1007/s10725-014-9894-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-014-9894-z

Keywords

Navigation