Skip to main content
Log in

Coumarin interacts with auxin polar transport to modify root system architecture in Arabidopsis thaliana

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Coumarin is a highly active allelopathic compound which plays a key role in plant–plant interactions and communications. It affects root growth and development of many species, but its mode of action has not been clarified yet. It has been hypothesized that auxin could mediate coumarin-induced effects on root system. Through morphological and pharmacological approaches together with the use of Arabidopsis auxin mutants, a possible interaction between coumarin and auxin in driving root system development has been investigated in Arabidopsis thaliana (Col-0). Coumarin strongly affected primary root elongation and lateral root development of Arabidopsis seedlings. In particular, 10−4 M coumarin significantly inhibited primary root elongation increasing lateral root number and root hairs length. Further, coumarin addition was able to restore the negative effects of TIBA and NPA, two auxin transport inhibitors, which caused a complete inhibition of lateral root formation. Arabidopsis auxin mutants differently responded to coumarin compared to wild type (Col-0). In particular, lax3 mutant showed the lowest (42 %) inhibition of primary root length, whereas, eir1-4 mutant had higher inhibition (53 %) compared to Col-0; conversely, aux1-22 mutant did not show any effect in response to coumarin. An increase of lateral root number was observed in pin1 mutant only. Finally, coumarin increased the root hairs length in eir1-4, lax3, pin1 and pin3-5 mutants, but not in aux1-22. These results suggested a functional interaction between coumarin and auxin polar transport in driving root development in A. thaliana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abenavoli MR, De Santis C, Sidari M, Sorgonà A, Badiani M, Cacco G (2001) Influence of coumarin on the net nitrate uptake in durum wheat. New Phytol 150:619–627

    Article  CAS  Google Scholar 

  • Abenavoli MR, Sorgonà A, Albano S, Cacco G (2004) Coumarin differentially affects the morphology of different root types of maize seedlings. J Chem Ecol 30:1871–1883

    Article  CAS  PubMed  Google Scholar 

  • Abenavoli MR, Nicolò A, Lupini A, Oliva S, Sorgonà A (2008) Effects of different allelochemicals on root morphology of Arabidopsis thaliana. Allelopathy J 22:245–252

    Google Scholar 

  • Avers CJ, Goodwin RH (1956) Studies on root. IV. Effects of coumarin and scopoletin on the standard root growth pater of Phleum pretense. Am J Bot 43:612–620

    Article  CAS  Google Scholar 

  • Bao F, Shen J, Brady SR, Muday GK, Asami T, Yang Z (2004) Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol 134:1624–1631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradient as common module for plant organ formation. Cell 115:591–602

    Article  PubMed  Google Scholar 

  • Benková E, Ivanchenko MG, Friml J, Shishkova S, Dubrovsky JG (2009) A morphogenetic trigger: is there an emerging concept in plant developmental biology? Trends Plant Sci 14:189–193

    Article  PubMed  Google Scholar 

  • Canellas LP, Olivares FL, Okorokova-Façanha AL, Façanha AR (2002) Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol 130:1951–1957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Casimiro I, Beekman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171

    Article  CAS  PubMed  Google Scholar 

  • Chávez-Avilés MN, Andrade-Pérez CL, de la Ryes Cruz H (2013) PP2A mediates lateral root development under NaCl-induced osmotic stress throughout auxin redistribution in Arabidopsis thaliana. Plant Soil 368:591–602

    Article  Google Scholar 

  • De Smet I, Vanneste S, Inzé D, Beeckman T (2006) Lateral root initiation or the birth of a new meristem. Plant Mol Biol 60:871–887

    Article  CAS  PubMed  Google Scholar 

  • De Smet I, Tetsumura T, De Rybel B, Frei dit Frey N, Laplaze L, Casimiro I, Swarup R, Naudts M, Vanneste S, Audenaert D, Inzé D, Bennett MJ, Beeckman T (2007) Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 134:681–690

    Article  PubMed  Google Scholar 

  • Doncheva S, Amenós M, Poschenrieder C, Barceló J (2005) Root cell patterning: a primary target for aluminium toxicity in maize. J Exp Bot 56:1213–1220

    Article  CAS  PubMed  Google Scholar 

  • Dubrovsky JG, Forde BG (2012) Quantitative analysis of lateral root development: pitfalls and how avoid then. Plant Cell 24:4–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dubrovsky JG, Napsucialy-Mendivil S, Duclercq J, Cheng Y, Shishkova S, Ivanchenko MG, Friml J, Murphy AS, Benková E (2011) Auxin minimum defines a development window for lateral root initiation. New Phytol 191:970–983

    Article  CAS  PubMed  Google Scholar 

  • Evans ML, Ishikawa H, Estelle MA (1994) Responses of Arabidopsis roots to auxin studied with high temporal resolution—comparison of wild-type and auxin-response mutants. Planta 194:215–222

    Article  CAS  Google Scholar 

  • Goodwin RH, Avers CJ (1950) The effect of coumarin derivatives on growth of Avena root. Am J Bot 37:224–227

    Article  CAS  Google Scholar 

  • Hodge A (2006) Plastic plants and patchy soils. J Exp Bot 57:401–411

    Article  CAS  PubMed  Google Scholar 

  • Jansen MAK, Van den Noort RE, Tan A, Prinsen E, Lagrimini M, Thorneley RNF (2001) Phenol-oxidizing peroxidases contribute to the protection of plants from ultraviolet radiation stress. Plant Physiol 126:1012–1023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones AR, Kramer EM, Knox K, Swarup R, Bennett MJ, Lazarus CM, Leyser HM, Grierson CS (2009) Auxin transport through non-hair cells sustains root-hair development. Nat Cell Biol 11:78–84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kollmeier M, Felle HH, Horst WJ (2000) Genotypical differences in aluminium resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminium? Plant Physiol 122:945–956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kupidlowska E, Kowalec M, Sulkowski G, Zobel AM (1994) The effect of coumarins on root elongation and ultrastructure of meristematic cell protoplast. Ann Bot 73:525–530

    Article  CAS  Google Scholar 

  • Laskowski M, Biller S, Stanley K, Kajstura T, Prusty R (2006) Expression profiling of auxin-treated Arabidopsis roots: toward a molecular analysis of lateral root emergence. Plant Cell Physiol 47:788–792

    Article  CAS  PubMed  Google Scholar 

  • Li X, Gruber MY, Hegedus DD, Lydiate DJ, Gao M-J (2011) Effects of a coumarin derivative, 4-methylumbelliferone, on seed germination and seedlings establishment in Arabidopsis. J Chem Ecol 37:880–890

    Article  CAS  PubMed  Google Scholar 

  • López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol 129:244–256

    Article  PubMed Central  PubMed  Google Scholar 

  • López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287

    Article  PubMed  Google Scholar 

  • Lupini A, Sorgonà A, Miller AJ, Abenavoli MR (2010) Short-time effects of coumarin along the maize primary root axis. Plant Signal Behav 5:1395–1400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lupini A, Araniti F, Sunseri F, Abenavoli MR (2013) Gravitropic response induced by coumarin: evidences of ROS distribution involvement. Plant Signal Behav 8:e23156

    Article  PubMed Central  PubMed  Google Scholar 

  • Marchant A, Bhalerao R, Casimiro I, Eklof J, Casero PJ, Bennett M, Sandberg G (2002) AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell 14:589–597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mravec J, Kubeš M, Bielach A, Gaykova V, Petrášek J, Skůpa P, Chand S, Benková E, Zažímalová E, Friml J (2008) Interaction of PIN and PGP transport mechanisms in auxin distribution-dependent development. Development 135:3345–3354

    Article  CAS  PubMed  Google Scholar 

  • Mravec J, Skůpa P, Bailly A, Hoyerová K, Křeček P, Bielach A, Petrášek J, Zhang J, Gaykova V, Stierhof Y-D, Dobrev PI, Schwarzerová K, Rolčík J, Seifertová D, Luschnig C, Benková E, Zažímalová E, Geisler M, Friml J (2009) Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature 459:1136–1140

    Article  CAS  PubMed  Google Scholar 

  • Neumann J (1959) An Auxin-like Action of coumarin. Science 129:1675–1676

    Article  CAS  PubMed  Google Scholar 

  • Nibau C, Gibbs DJ, Coates JC (2008) Branching out in new directions: the control of root architecture by lateral root formation. New Phytol 179:595–614

    Article  CAS  PubMed  Google Scholar 

  • Parry G, Delbarre A, Marchant A, Swarup R, Napier R, Perrot-Rechenmann C, Bennett MJ (2001) Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant J 25:399–406

    Article  CAS  PubMed  Google Scholar 

  • Péret B, De Rybel B, Casimiro I, Benková I, Swarup R, Laplaze L, Beeckman T, Bennett MJ (2009) Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14:399–408

    Article  PubMed  Google Scholar 

  • Petrásek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688

    Article  PubMed  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105

    Article  CAS  PubMed  Google Scholar 

  • Rice EL (1984) Allelopathy. Academic Press, New York

    Google Scholar 

  • Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–472

    Article  CAS  PubMed  Google Scholar 

  • Schlichting CD (1986) The evolution of phenotypic plasticity in plants. Annu Rev Ecol Syst 17:667–693

    Article  Google Scholar 

  • Svensson SB (1971) The Effect of coumarin on root growth and root histology. Physiol Plant 24:446–470

    Article  CAS  Google Scholar 

  • Svensson SB (1972) The effect of coumarin on growth, production of dry matter, protein and nucleic acids in roots of maize and wheat and the interactions of coumarin with metabolic inhibitors. Physiol Plant 27:13–24

    CAS  Google Scholar 

  • Swarup R, Friml J, Marchant A, Ljung K, Sanberg G, Palme K, Bennet M (2001) Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev 15:2648–2653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whitehead DC, Dibb H, Hartley RD (1982) Phenolic compounds in soil as influenced by the growth of different plant species. J Appl Ecol 19:579–588

    Article  CAS  Google Scholar 

  • Zažímalová E, Murphy AS, Yang H, Hoyerová K, Hosek P (2010) Auxin transporters: why so many? Cold Spring Harb Perspect Biol 2:a001552

    PubMed Central  PubMed  Google Scholar 

  • Zobel AM, Brown SA (1995) Coumarins in the interaction between the plant and its environment. Allelopathy J 2:9–22

    Google Scholar 

  • Zolla G, Heimer YM, Barak S (2010) Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots. J Exp Bot 61:211–224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Eva Benková (VIB Department of Plant Systems Biology, UGent), Malcolm Bennett and Ranjan Swarup (Plant Sciences Division, School of Biosciences, University of Nottingham) for providing Arabidopsis mutants used in the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Rosa Abenavoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lupini, A., Araniti, F., Sunseri, F. et al. Coumarin interacts with auxin polar transport to modify root system architecture in Arabidopsis thaliana . Plant Growth Regul 74, 23–31 (2014). https://doi.org/10.1007/s10725-014-9893-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-014-9893-0

Keywords

Navigation