Skip to main content
Log in

Effects of CaCl2 pretreatment on antioxidant enzyme and leaf lipid content of faba bean (Vicia faba L.) seedlings under cadmium stress

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

In the present investigation we studied the role of CaCl2 pretreatment on physiological and biochemical characteristics in faba bean (Vicia faba L.) seedlings subjected to cadmium (Cd) stress. The seeds of faba bean were treated with H2O and 2 % CaCl2 before germination for 6 h. Primed or nonprimed (control) seeds were then germinated under increasing concentrations of Cd (0, 10, 50 and 100 μM) for 21 days. The contents of Cd, soluble protein (SP), malondialdehyde (MDA), total membrane lipid contents, fatty acid composition and the activities of superoxide dismutase (SOD EC 1.15.1.1), catalase (CAT EC 1.11.1.6), guaiacol peroxidase (GPX EC 1.11.1.7), lipoxygenase (LOX) in the seedlings leaves were tested. Exposure of the plants to Cd caused a gradual decrease in the shoot and root dry weight. Seed pretreatment with CaCl2 alleviated the negative effect of Cd on plant growth parameters. The same tendency was observed for the chlorophyll content. The level of lipid peroxidation (as indicated by MDA content) was higher in Cd-treated plants, and remained unchanged in CaCl2-pretreated plants. The same results for the total lipid content, fatty acids composition and SP level were observed. Treatment of plants with Cd drastically decreased CAT activity and caused an increase in both SOD and GPX activity. However, in CaCl2-pretreated plants, CAT activity exhibited a slight decrease under Cd treatment. An increased of SOD and GPX activity in leaves of pretreated plants was also demonstrated. The data suggest that CaCl2 pretreatment may protect faba bean seedlings against Cd toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Agarwal S, Sairum R, Srivastava G, Meena R (2005) Changes in antioxidant enzyme activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. Biol Plant 49:541–550

    Article  CAS  Google Scholar 

  • Alexander K, Rusina Y, Tibor J, Gabriella S, Losanka P (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165:920–931

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M, Foolad RM (2005) Pre-sowing seed treatment—a shotgun approach to improve germination, plant growth and crop yield under saline and non-saline conditions. Adv Agron 88:223–271

    Article  Google Scholar 

  • Axerold B, Chesbrough TM, Laakso S (1981) Lipoxygenase from soybean. In: Lowenstein JM (ed) Methods enzymology, Academic Press, New York, pp 441–451

  • Azevedo Neto AD, Prisco JT, Eness-Filho J, Medeiros JVR, Gomes-Filho E (2005) Hydrogen peroxide pre-treatment induces stress acclimation in maize plants. J Plant Physiol 162:114–122

    Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–286

    Article  PubMed  CAS  Google Scholar 

  • Belkhadi A, Hediji H, Abbes Z, Nouairi I, Barhoumi Z, Zarrouk M, Chaïbi W, Djebali W (2010) Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L. Ecotoxicol Environ Saf 73:1004–1011

    Article  PubMed  CAS  Google Scholar 

  • Ben Ammar W, Nouairi I, Zarrouk M, Jemal F (2007) Cadmium stress induces changes in the lipid composition and biosynthesis in tomato (Lycopersicon esculentum Mill.) Plant Growth Regul 53:75–85

    Google Scholar 

  • Ben Youssef N, Nouairi I, Temime S, Taamalli W, Zarrouk M, Ghorbel MH (2005) Effets du cadmium sur le métabolisme des lipides de plantules de colza (Brassica napus L.). C R Biol 328:745–757

    Article  PubMed  CAS  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro M (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  • Béraud E, Cotelle S, Leroy P, Férard JF (2007) Genotoxic effects and induction of phytochelatins in the presence of cadmium in Vicia faba roots. Mut Res 633:112–116

    Article  Google Scholar 

  • Beyer WF, Fridovich I (1987) Effect of hydrogen peroxide on the iron-containing superoxide dismutase of Escherichia coli. Biochem 26:1251–1257

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I (2000) Possible role of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    Article  CAS  Google Scholar 

  • Casenave EC, Toselli ME (2007) Hydropriming as a pre-treatment for cotton germination under thermal and water stress conditions. Seed Sci Technol 35:88–98

    Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, El Ferjani E (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L). Plant Sci 127:139–147

    Article  CAS  Google Scholar 

  • Choi YE, Harada E, Wada M, Tsuboi H, Morita Y, Kusano T, Sano H (2001) Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta 213:45–50

    Article  PubMed  CAS  Google Scholar 

  • Cordova Rosa EV, Valgas C, Souza-Sierra MM, da Rosa Corrêa AX, Radetski CM (2003) Biomass growth, micronucleus induction, and antioxidant stress enzyme responses in Vicia faba exposed to cadmium in solution. Environ Toxicol Chem 22:645–649

    Article  Google Scholar 

  • Crépon K, Marget P, Peyronnet C, Carrouée B, Arese P, Duc G (2010) Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crops Res 115:329–339

    Article  Google Scholar 

  • De DN (2000) Plant cell vacuoles. CSIRO Publishing, Collingwood

    Google Scholar 

  • Dixit V, Pandey V, Shymar R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv Azard). J Exp Bot 52:1101–1109

    Article  PubMed  CAS  Google Scholar 

  • Djebali W, Zarrouk M, Brouquisse R, El Kahoui S, Limam F, Ghorbel MH, Chaïbi W (2005) Ultrastructure and lipid alterations induced by cadmium in tomato (Lycopersicon esculentum) chloroplast membranes. Plant Biol 7:258–268

    Article  Google Scholar 

  • Douce R (1964) Identification et dosage de quelques glycérophosphatides dans les souches normales et tumorales de scorsonères cultivées “in vitro”. C R Acad Sci Paris 259:3066–3068

    CAS  Google Scholar 

  • Duc G (1997) Faba bean (Vicia faba L.). Field Crops Res 53:99–109

    Article  Google Scholar 

  • Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41:229–248

    CAS  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  • Foltête AS, Masfaraud JF, Férard JF, Cotelle S (2011) Is there a relationship between early genotoxicity and life-history traits in Vicia faba exposed to cadmium-spiked soils? Mutat Res. doi:10.1016/j.mrgentox.2010.12.011

    PubMed  Google Scholar 

  • Guo B, Liang YC, Zhu YG, Zhao FJ (2007) Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environ Pollut 147:743–749

    Article  PubMed  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  PubMed  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetic and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1938) The water culture method for growing plants without soil. Calif Agric Exp Stn 347:36–39

  • Hung SH, Yu CW, Lin CH (2005) Hydrogen peroxide functions as a stress signal in plants. Bot Acad Sinica 46:1–10

    CAS  Google Scholar 

  • Iqbal M, Ashraf M (2005) Changes in growth, photosynthetic capacity and ionic relations in spring wheat (Triticum aestivum L.) due to pre-sowing seed treatment with polyamines. Plant Growth Regul 46:19–30

    Article  CAS  Google Scholar 

  • Iqbal M, Ashraf M (2007) Seed treatment with auxins modulates growth and ion partitioning in salt-stressed wheat plants. J Integr Plant Biol 49:1003–1015

    Article  CAS  Google Scholar 

  • Kaur SA, Gupta K, Kaur N (2002) Effect of osmo and hydro priming of chickpea seeds on seedling growth and carbohydrate metabolism under water deficit stress. Plant Growth Regul 37:17–22

    Article  CAS  Google Scholar 

  • Kinraide TB, Yermiyahu U, Rytwo G (1998) Computation of surface electrical potentials of plant cell membranes. Correspondence to published zeta potentials from diverse plant sources. Plant Physiol 118:505–512

    Article  PubMed  CAS  Google Scholar 

  • Lin AJ, Zhang XH, Chen MM, Cao Q (2007) Oxidative stress and DNA damages induced by cadmium accumulation. J Environ Sci 19:596–602

    Article  CAS  Google Scholar 

  • López-Millán AF, Sagardoy R, Solanas M, Abadía A, Abadía J (2009) Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ Exp Bot 65:376–385

    Article  Google Scholar 

  • Losanka PP, Liliana TM, Rusina YY, Albena PI, Aleksander PK, Gabriella S, Tibor J (2009) Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol Biochem 47:224–231

    Article  Google Scholar 

  • Lozano-Rodriguez E, Hernandez LE, Bonay P, Carpena-Ruiz RO (1997) Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances. J Exp Bot 48:123–128

    Article  CAS  Google Scholar 

  • Maria F, Rűcka K, Helina H, Iwona S, Agnieszka J, Zbigniew M, Agnieszka G (2008) The protective role of selenium in rape seedlings subjected to cadmium stress. J Plant Physiol 165:833–844

    Article  Google Scholar 

  • Metcalfe LD, Schmitz AA, Pelka JR (1966) Rapid preparation of fatty acids esters from lipids for gas chromatographic analysis. Ann Chem 38:524–535

    Article  Google Scholar 

  • Metwally A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 56:167–178

    PubMed  CAS  Google Scholar 

  • Moussa HR (2004) Effect of cadmium on growth and oxidative metabolism of faba bean plants. Acta Agron Hung 52:269–277

    Article  CAS  Google Scholar 

  • Nouairi I, Ben Ammar W, Ben Youssef N, Ben Miled Daoud D, Ghorbel MH, Zarrouk M (2006) Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Sci 170:511–519

    Article  CAS  Google Scholar 

  • Nouairi I, Ben Ammar W, Ben Youssef N, Ben Miled DD, Ghorbal MH, Zarrouk M (2009) Antioxidant defense system in leaves of Indian mustard (Brassica juncea) and rape (Brassica napus) under cadmium stress. Acta Physiol Plant 31:237–247

    Article  CAS  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548

    Article  PubMed  CAS  Google Scholar 

  • Pinto AP, Mota AM, de Varennes A, Pinto FC (2004) Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Sci Total Environ 326:239–247

    Article  PubMed  CAS  Google Scholar 

  • Polle A, Otter T, Seifert F (1994) Apoplastic peroxidases and lignification in needles of Norway Spruce Picea abies L. Plant Physiol 106:53–60

    PubMed  CAS  Google Scholar 

  • Quartacci MF, Pinzino C, Sgherri CLM, Dalla Vecchia F, Navari-Izzo F (2000) Growth in excess copper induces changes in lipid composition and fluidity of PSII-enriched membranes in wheat. Physiol Plant 108:87–93

    Article  CAS  Google Scholar 

  • Quartacci MF, Cosi E, Navari-Izzo F (2001) Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. J Exp Bot 52:77–84

    Article  PubMed  CAS  Google Scholar 

  • Rahoui S, Chaoui A, El Ferjani E (2008) Differential sensitivity to cadmium in germinating seeds of three cultivars of faba bean (Vicia faba L.). Acta Physiol Plant 30:451–456

    Article  Google Scholar 

  • Romero-Puertas MC, Palma JM, Gómez M, del Río LA, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25:677–686

    Article  CAS  Google Scholar 

  • Salim R, Al-Subu MM, Douleh A, Khalaf S (1992) Effects on growth and uptake of broad bean (Vicia fabae L.) by root and foliar treatments of plant with lead and cadmium. J Environ Sci Health 27:1619–1642

    Article  Google Scholar 

  • Salt DE, Rauser WE (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301

    PubMed  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    PubMed  CAS  Google Scholar 

  • Shad KK, John GM, Leigh WM (2001) Germination of soybean seed primed in aerated solution of polyethylene glycol 8000. J Bio Sci 13:105–107

    Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  PubMed  CAS  Google Scholar 

  • Sivritepe HO, Sivritepe N, Eris A, Turhan E (2005) The effects of NaCl pre-treatment on salt tolerance of melons grown under long-term salinity. Sci Hortic 106:568–581

    Article  CAS  Google Scholar 

  • Souguir D, Ferjani E, Ledoigt G, Goupil P (2011) Sequential effects of cadmium on genotoxicity and lipoperoxidation in Vicia faba roots. Ecotoxicol 20:329–336

    Article  CAS  Google Scholar 

  • Speiser DM, Abrahamson SL, Banuelos G, Ow DW (1992) Brassica juncea produces a phytochelatin-cadmium-sulfide complex. Plant Physiol 99:817–821

    Article  PubMed  CAS  Google Scholar 

  • Strain HH, Cope BT, Svec WA (1971) Analytical procedures for the isolation, identification, estimation and investigation of the chlorophylls. Methods Enzymol 23:452–476

    Article  Google Scholar 

  • Thompson JE, Froese CD, Madey E, Smith MD, Hong Y (1998) Lipid metabolism during plant senescence. Prog Lipid Res 372:119–141

    Article  Google Scholar 

  • Tukaj Z, Baścik-Remisiewicz A, Skowroński T, Tukaj C (2007) Cadmium effect on the growth, photosynthesis, ultrastructure and phytochelatin content of green microalga Scenedesmus armatus: a study at low and elevated CO2 concentration. Environ Exp Bot 60:291–299

    Article  CAS  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T (2002) Effect of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523

    Article  CAS  Google Scholar 

  • Ünyayar S, Celik A, Cekic FO, Gozel A (2006) Cadmium-induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Vicia faba. Mutagenesis 21:77–81

    Article  PubMed  Google Scholar 

  • Vitória AP, Lea PJ, Azevedo RA (2001) Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry 57:710–710

    Article  Google Scholar 

  • Vögeli-Lange R, Wagner GJ (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves—implication of a transport function for cadmium-binding peptides. Plant Physiol 92:1086–1093

    Article  PubMed  Google Scholar 

  • Wahid A, Shabbir A (2005) Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycinebetaine. Plant Growth Regul 46:133–141

    Article  CAS  Google Scholar 

  • Zhao F, Guo S, Zhang H, Zhao Y (2006) Expression of yeast SOD2 in transgenic rice results in increased salt tolerance. Plant Sci 170:216–224

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nouairi Issam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Issam, N., Kawther, M., Haythem, M. et al. Effects of CaCl2 pretreatment on antioxidant enzyme and leaf lipid content of faba bean (Vicia faba L.) seedlings under cadmium stress. Plant Growth Regul 68, 37–47 (2012). https://doi.org/10.1007/s10725-012-9691-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-012-9691-5

Keywords

Navigation