Skip to main content
Log in

Improved growth performance of the mangrove Avicennia marina seedlings using a 1-aminocyclopropane-1-carboxylic acid deaminase-producing isolate of Pseudoalteromonas maricaloris

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Out of 62 bacterial isolates obtained from the mangrove Avicennia marina rhizosphere that grows along the Abu Dhabi coast, United Arab Emirates (UAE), an isolate of Pseudoalteromonas maricaloris (Wild type strain) (WT) produced relatively high levels of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase in vitro. Application of this WT strain under greenhouse conditions to A. marina seedlings significantly (P < 0.05), reduced endogenous levels of ACC in the roots and shoots, and significantly (P < 0.05) increased the levels of in planta endogenous plant growth regulators (PGRs) including indole-3-acetic acid (IAA), indole-3-pyruvic acid (IPYA), putrescine (Put), spermidine (Spd) and spermine (Spm) in roots and shoots compared with control mangrove seedlings. WT application has also significantly (P < 0.05) increased photosynthetic pigment contents, photosynthetic carbon assimilation, plant water use efficiency and promoted mangrove seedlings growth characteristics including increased dry weight and length of roots and shoots, total leaf area and the number of the side branches compared with control mangrove seedlings. In comparison, an ACC deaminase non-producing mutant strain (NPM) failed to reduce endogenous levels of ACC in the roots and shoots and also failed to increase endogenous PGRs and photosynthetic pigments and did not promote seedling growth. Both WT and NPM strains were incapable of producing in vitro detectable levels of IAA, IPYA, Gibberellic acid (GA3), zeatin (Z), Put, Spd and Spm in the culture filtrates. This study demonstrated for the first time the ability of ACC deaminase-producing bacteria to promote mangrove growth under greenhouse conditions. P. maricaloris has potential as biological inoculants to promote the growth of mangrove seedlings in afforestation programs in nutrient impoverished sediments in hyper-saline coastal areas in the UAE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

PGPB:

Plant growth promoting bacteria

ACC:

1-aminocyclopropane-1-carboxylic acid

IAA:

Indole-3-acetic acid

IPYA:

Indole-3-pyruvic acid

GA3 :

Gibberellic acid

iP:

Isopentenyl adenine

iPR:

Isopentenyl adenosine

Z:

Zeatin

Put:

Putrescine

Spd:

Spermidine

Spm:

Spermine

References

  • Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology, 2nd edn. Academic Press, CA, p 414

    Google Scholar 

  • Ahmed S, Nawata E, Sakuratani T (2006) Changes of endogenous ABA and ACC, and their correlations to photosynthesis and water relations in mungbean [Vigna radiata (L.) Wilczak cv. KPS1] during waterlogging. Environ Exper Bot 57:278–284

    Article  CAS  Google Scholar 

  • Al-Habshi A, Youssef T, Aizpuru M, Blasco F (2007) New mangrove ecosystem data along the UAE coast using remote sensing. Aquat Ecosys Health Manag 10:309–319

    Article  Google Scholar 

  • Arena ME, Manca de Nadra MC (2001) Biogenic amine production by Lactobacillus. J Appl Microbiol 90:158–162

    Article  PubMed  CAS  Google Scholar 

  • Bashan Y, de-Bashan LE (2005) Bacteria/plant growth-promotion. In: Hillel D (ed) Encyclopedia of soils in the environment, vol 1. Elsevier, Oxford, pp 103–115

    Google Scholar 

  • Bashan Y, Holguin G (2002) Plant growth-promoting bacteria: a potential tool for arid mangrove reforestation. Trees 16:159–166

    Article  CAS  Google Scholar 

  • Bashan Y, Puente ME, Myrold DD, Toledo G (1998) In vitro transfer of fixed nitrogen from diazotrophic filamentous cyanobacteria to black mangrove seedlings. FEMS Microbiol Ecol 26:165–170

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  PubMed  CAS  Google Scholar 

  • Bertrand H, Plassard C, Pinochet X, Touraine B, Normand P, Cleyet-Marel JC (2000) Stimulation of ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium (Achromobacter sp.). Can J Microbiol 46:229–236

    PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–258

    Article  PubMed  CAS  Google Scholar 

  • Cassán F, Maiale S, Masciarelli O, Vidal A, Luna V, Ruiz O (2009) Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur J Soil Biol 45:12–19

    Article  Google Scholar 

  • Davies BH (1965) Analysis of carotenoid pigments. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments. Academic Press, London, pp 489–532

    Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Dodd IC (2003) Hormonal interactions and stomatal responses. J Plant Growth Regul 22:32–46

    Article  CAS  Google Scholar 

  • Dworkin M, Foster J (1958) Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol 75:592–601

    PubMed  CAS  Google Scholar 

  • Dye DW (1962) The inadequacy of the usual determinative tests for identification of Xanthomonas spp. NZT Sci 5:393–416

    Google Scholar 

  • El-Tarabily KA (2008) Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere-competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant Soil 308:161–174

    Article  CAS  Google Scholar 

  • El-Tarabily KA, Youssef T (2010) Enhancement of morphological, anatomical and physiological characteristics of seedlings of the mangrove Avicennia marina inoculated with a native phosphate-solubilizing isolate of Oceanobacillus picturae under greenhouse conditions. Plant Soil 332:147–162

    Article  CAS  Google Scholar 

  • El-Tarabily KA, Nassar AH, Hardy GEStJ, Sivasithamparam K (2003) Fish emulsion as a food base for rhizobacteria promoting growth of radish (Raphanus sativus L. var. sativus) in a sandy soil. Plant Soil 252:397–411

    Article  CAS  Google Scholar 

  • Evans PT, Malmberg RL (1989) Do polyamines have roles in plant development? Annu Rev Plant Phys Plant Mol Biol 40:235–269

    Article  CAS  Google Scholar 

  • Flores HE, Galston AW (1982) Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol 69:701–706

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Penterman JN, Little RD, Chavez R, Glick BR (2003) Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiol Biochem 41:277–281

    Article  CAS  Google Scholar 

  • Glick BR, Jacobson CB, Schwarze MMK, Pasternak JJ (1994) 1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12–2 do not stimulate canola root elongation. Can J Microbiol 40:911–915

    Article  CAS  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Guinn G, Brummett DL, Beier RC (1986) Purification and measurement of abscisic acid and indole-acetic acid by high performance liquid chromatography. Plant Physiol 81:997–1002

    Article  PubMed  CAS  Google Scholar 

  • Holden M (1965) Chlorophylls. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments. Academic Press, London, pp 462–488

    Google Scholar 

  • Holguin G, Guzman MA, Bashan Y (1992) Two new nitrogen-fixing bacteria from the rhizosphere of mangrove trees: their isolation, identification and in vitro interaction with rhizosphere Staphylococcus sp. FEMS Microbiol Ecol 101:207–216

    CAS  Google Scholar 

  • Holguin G, Bashan Y, Vazquez P (2001) The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biol Fert Soils 33:265–278

    Article  CAS  Google Scholar 

  • Holguin G, Gonzalez-Zamorano P, de-Bashan LE, Mendoza R, Amador E, Bashan Y (2006) Mangrove health in an arid environment encroached by urban development: a case study. Sci Total Environ 363:260–274

    Article  PubMed  CAS  Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42:1825–1831

    Article  CAS  Google Scholar 

  • Ivanova EP, Shevchenko LS, Sawabe T, Lysenko AM, Svetashev VI, Gorshkova MN, Satomi M, Christen R, Mikhailov VV (2002) Pseudoalteromonas maricaloris sp. nov., isolated from an Australian sponge, and reclassification of [Pseudoalteromonas aurantia] NCIMB 2033 as Pseudoalteromonas flavipulchra sp. nov. Int J Syst Evol Microbiol 52:263–271

    PubMed  CAS  Google Scholar 

  • Kathiresan K, Selvam MM (2006) Evaluation of beneficial bacteria from mangrove soil. Bot Mar 49:86–88

    Article  CAS  Google Scholar 

  • Lanneluc-Sanson D, Phan CT, Granger RL (1986) Analysis by reverse-phase high-pressure liquid chromatography of phenylisothiocyanate-derivatized 1-aminocyclopropane-1-carboxylic acid in apple extracts. Anal Biochem 155:322–327

    Article  PubMed  CAS  Google Scholar 

  • Li J, Ovakim DH, Charles TC, Glick BR (2000) An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr Microbiol 41:101–105

    Article  PubMed  CAS  Google Scholar 

  • Lizada MC, Yang SF (1979) A simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid. Anal Biochem 100:140–145

    Article  PubMed  CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, NY, pp 121–185

    Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Naidoo G (2009) Differential effects of nitrogen and phosphorus enrichment on growth of dwarf Avicennia marina mangroves. Aquat Bot 90:184–190

    Article  CAS  Google Scholar 

  • Penrose DM, Moffatt BA, Glick BR (2001) Determination of 1-aminocyclopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Can J Microbiol 47:77–80

    Article  PubMed  CAS  Google Scholar 

  • Primavera JH, Sadaba RS, Lebata MJHL, Altamirano JP (2004) Handbook of mangroves in the Philippines-Panay. Southeast Asian Fisheries Development Centre Aquaculture Department, Iloilo

    Google Scholar 

  • Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E (1996) The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage; proposal of Nocardiopsaceae fam. nov. Int J Sys Bacteriol 46:1088–1092

    Article  CAS  Google Scholar 

  • Ravikumar S, Kathiresan K, Ignatiammal ST, Selvam MB, Shanthy S (2004) Nitrogen-fixing azotobacters from mangrove habitat and their utility as marine biofertilizers. J Exp Mar Biol Ecol 312:5–17

    Article  CAS  Google Scholar 

  • Redmond JW, Tseng A (1979) High-pressure liquid chromatographic determination of putrescine, spermidine and spermine. J Chromatogr 170:479–481

    Article  CAS  Google Scholar 

  • Rojas A, Holguin G, Glick BR, Bashan Y (2001) Synergism between Phyllobacterium sp. (N2-fixer) and Bacillus licheniformis (P-solubilizer), both from a semiarid mangrove rhizosphere. FEMS Microbiol Ecol 35:181–187

    Article  PubMed  CAS  Google Scholar 

  • Sgroy V, Cassan F, Masciarelli O, Del Papa MF, Lagares A, Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85:371–381

    Article  PubMed  CAS  Google Scholar 

  • Shah S, Li J, Moffatt BA, Glick BR (1998) Isolation and characterization of ACC deaminase gene from two different plant growth-promoting rhizobacteria. Can J Microbiol 44:833–843

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Davies PJ (1985) Separation and quantitation of polyamines in plant tissue by high performance liquid chromatography of their dansyl derivatives. Plant Physiol 78:89–91

    Article  PubMed  CAS  Google Scholar 

  • Tien TM, Gaskings MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37:1016–1024

    PubMed  CAS  Google Scholar 

  • Vazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semi arid coastal lagoon. Biol Fert Soils 30:460–468

    Article  CAS  Google Scholar 

  • Youssef T, Awad M (2008) Mechanisms of enhancing photosynthetic gas exchange in date palm seedlings (Phoenix dactylifera L.) under salinity stress by a 5-aminolevulinic acid-based fertilizer. J Plant Growth Regul 27:1–9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by Tourism Development and Investment Company (TDIC), Abu Dhabi, United Arab Emirates (Contract number P001/M25/070812/04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled A. El-Tarabily.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Tarabily, K.A., Youssef, T. Improved growth performance of the mangrove Avicennia marina seedlings using a 1-aminocyclopropane-1-carboxylic acid deaminase-producing isolate of Pseudoalteromonas maricaloris . Plant Growth Regul 65, 473–483 (2011). https://doi.org/10.1007/s10725-011-9618-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-011-9618-6

Keywords

Navigation