Skip to main content
Log in

Interactive effects of potassium and sodium on root growth and expression of K/Na transporter genes in rice

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Sufficient supply of potassium (K) can alleviate the adverse effects of excess sodium (Na) on plant growth. However, it remains unclear if such a beneficial function is related to regulation of root growth and/or expression of K/Na transporters. Herein we report the responses of a rice cultivar, which was pretreated with normal nutrient solution for 1 month, to three levels of Na (0, 25, and 100 mM) without or with supply of K for 9 days. High Na (100 mM) significantly decreased plant growth, root activity, and total K uptake, and increased biomass ratio of roots to shoots. Short-term removal of K supply (9 days) did not affect root morphology and biomass ratio of roots to shoots, but decreased root activity of seedlings grown in high Na solution. K deficiency increased uptake of Na and transport of K from roots to shoots. Moreover, expression of OsHAK1, a putative K transporter gene, was upregulated by low Na (25 mM) and downregulated by high Na (100 mM) in roots. In leaves, its expression was suppressed by the Na treatments when K supply was maintained. Expression of OsHKT2;1, which encodes a protein that acts mainly as a Na transporter, was downregulated by high Na, but was enhanced by K deficiency both in roots and leaves. Expression of five other putative K/Na transporter or Na+/H+ genes, OsHKT1;1, OsHKT1;2, OsHKT2;3, OsNHX1, and OsSOS1, was not affected by the treatments. The results suggest that OsHAK1 and OsHKT2;1 were involved in the interactive effects of K and Na on their uptake and distribution in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amrutha RN, Sekhar PN, Varshney RK, Kishor PBK (2007) Genome-wide analysis and identification of genes related to potassium transporter families in rice (Oryza sativa L.). Plant Sci 172:708–721

    Article  CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Bañuelos MA, Garciadeblas B, Cubero B, Rodríguez-Navarro A (2002) Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol 130:784–795

    Article  PubMed  Google Scholar 

  • Burns IG, Hutsby W (1986) Cation replacement of potassium in the total shoot of lettuce and its effect on growth during K deficiency. J Sci Food Agric 37:129–135

    Article  CAS  Google Scholar 

  • Cakmak I, Hengeler C, Marschner H (1994) Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J Exp Bot 45:1245–1250

    Article  CAS  Google Scholar 

  • Chen CW, Yang YW, Lur HS, Tsai YG, Chang MC (2006) A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant Cell Physiol 47:1–13

    Article  PubMed  CAS  Google Scholar 

  • Dijkshoorn W, Sujitno JSA, Ismunadji M (1974) Potassium uptake by rice plants and interaction with other cations. Plant Soil 40:525–534

    Article  CAS  Google Scholar 

  • Fu H, Luan S (1998) AtKUP1: a dual-affinity K+ transporter from Arabidopsis. Plant Cell 10:63–73

    Article  PubMed  CAS  Google Scholar 

  • Fuchs I, Stölzle S, Ivashikina N, Hedrich R (2005) Rice K+ uptake channel OsAKT1 is sensitive to salt stress. Planta 221:212–221

    Article  PubMed  CAS  Google Scholar 

  • Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y (2004) Function, intracellular localization and the importance in salt tolerance of vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol 45:146–159

    Article  PubMed  CAS  Google Scholar 

  • Garcia A, Rizzo CA, Ud-Din J, Bartos SL, Senadhira D, Flowers TJ, Yeo AR (1997) Sodium and potassium transport to the xylem are inherited independently in rice, and the mechanism of sodium: potassium selectivity differs between rice and wheat. Plant Cell Environ 20:1167–1174

    Article  CAS  Google Scholar 

  • Garciadeblás B, Senn ME, Bañuelos MA, Rodríguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J 34:788–801

    Article  PubMed  Google Scholar 

  • Gierth M, Mäser P, Schroeder JI (2005) The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol 137:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Golldack D, Su H, Quigley F, Kamasani UR, Muñoz-Garay C, Balderas E, Popova OV, Bennett J, Bohnert HJ, Pantoja O (2002) Characterization of a HKT-type transporter in rice as a general alkali cation transporter. Plant J 31:529–542

    Article  PubMed  CAS  Google Scholar 

  • Grabov A (2007) Plant KT/KUP/HAK potassium transporters: single family—multiple functions. Ann Bot 99:1035–1041

    Article  PubMed  CAS  Google Scholar 

  • Haro R, Bañuelos MA, Senn ME, Barrero-Gil J, Rodríguez-Navarro A (2005) HKT1 mediates sodium uniport in roots. Pitfalls in the expression of HKT1 in yeast. Plant Physiol 139:1495–1506

    Article  PubMed  CAS  Google Scholar 

  • Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation. Trends Plant Sci 11:610–617

    Article  PubMed  CAS  Google Scholar 

  • Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J 27:129–138

    Article  PubMed  CAS  Google Scholar 

  • Horie T, Costa A, Kim TH, Han MJ, Horie R, Leung H, Miyao A, Hirochika H, An G, Schroeder JI (2007) Rice OsHKT2.1 mediates large Na+ influx component into K+-starved roots for growth. EMBO J 26:3003–3014

    Article  PubMed  CAS  Google Scholar 

  • Laurie S, Feeney KA, Maathuis FJM, Heard PJ, Brown SJ, Leigh RA (2002) A role for HKT1 in sodium uptake by wheat roots. Plant J 32:139–149

    Article  PubMed  CAS  Google Scholar 

  • Li B, Xin W, Sun S, Shen Q, Xu G (2006) Physiological and molecular responses of nitrogen- starved rice plants to re-supply of different nitrogen sources. Plant Soil 287:145–159

    Article  CAS  Google Scholar 

  • Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84:123–133

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Martínez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143:1001–1012

    Article  PubMed  CAS  Google Scholar 

  • Mäser P, Eckelman B, Vaidyanathan R, Horie T, Fairbairn DJ, Kubo M, Yamagami M, Yamaguchi K, Nishimura M, Uozumi N, Robertson W, Sussman MR, Schroeder JI (2002a) Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Lett 531:157–161

    Article  PubMed  Google Scholar 

  • Mäser P, Gierth M, Schroeder JI (2002b) Molecular mechanisms of potassium and sodium uptake in plants. Plant Soil 247:43–54

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Platten JD, Cotsaftis O, Berthomieu P, Bohnert H, Davenport RJ, Fairbairn DJ, Horie T, Leigh RA, Lin H, Luan S, Mäser P, Pantoja O, Rodríguez-Navarro A, Schachtman DP, Schroeder JI, Sentenac H, Uozumi N, Véry A, Zhu J-K, Dennis ES, Tester M (2006) Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci 11:372–374

    Article  PubMed  CAS  Google Scholar 

  • Quintero FJ, Blatt MR (1997) A new family of K+ transporters from Arabidopsis that are conserved across phyla. FEBS Lett 415:206–211

    Article  PubMed  CAS  Google Scholar 

  • Rains DW, Epstein E (1967) Sodium absorption by barley roots: its mediation by mechanism 2 of alkali cation transport. Plant Physiol 42:319–323

    Article  PubMed  CAS  Google Scholar 

  • Ridríguez-Navarro A, Rubio F (2006) High-affinity potassium and sodium transport systems in plants. J Exp Bot 57:1149–1160

    Article  Google Scholar 

  • Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660–1663

    Article  PubMed  CAS  Google Scholar 

  • Santa-María GE, Rubio F, Dubcovsky J, Rodríguez-Navarro A (1997) The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9:2281–2289

    Article  PubMed  Google Scholar 

  • Schachtman D, Liu W (1999) Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Trends Plant Sci 4:1360–1385

    Article  Google Scholar 

  • Schachtman DP, Kumar R, Schroeder JI, Marsh EL (1997) Molecular and functional characterization of a novel low-affinity cation transporter (LCT1) in higher plants. Proc Natl Acad Sci USA 94:11079–11084

    Article  PubMed  CAS  Google Scholar 

  • Steponkus PL, Lanphear FO (1967) Refinement of triphenyl tetrazolium chloride method of determining cold injury. Plant Physiol 42:1423–1426

    Article  PubMed  CAS  Google Scholar 

  • Su H, Golldack D, Zhao C, Bohnert HJ (2002) The expression of HAK-type K+ transporters is regulated in response to salinity stress in common ice plant. Plant Physiol 129:1482–1493

    Article  PubMed  CAS  Google Scholar 

  • Subbarao GV, Ito O, Berry WL, Wheeler RM (2003) Sodium—a functional plant nutrient. Crit Rev Plant Sci 22:391–416

    Google Scholar 

  • Sunarpi , Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder JI, Uozumi N (2005) Enhanced salt tolerance mediated by AtHKT1 transporterinduced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J 44:928–938

    Article  PubMed  CAS  Google Scholar 

  • Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker EP, Nakamura T, Schroeder JI (2000) The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol 122:1249–1259

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a special fund of the Key Laboratory of Marine Biology in Jiangsu Province. We thank Dr. Shubin Sun and Dr. Xiaorong Fan for technical support and Prof. Uzi Kafkafi from The Hebrew University of Jerusalem for valuable discussion and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 78 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Hu, Y. & Xu, G. Interactive effects of potassium and sodium on root growth and expression of K/Na transporter genes in rice. Plant Growth Regul 57, 271–280 (2009). https://doi.org/10.1007/s10725-008-9345-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-008-9345-9

Keywords

Navigation