Skip to main content
Log in

Endogenous polyamines lessen membrane damages in pea plants provoked by enhanced ultraviolet-C radiation

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The effect of low doses (LD)—0.1 kJ m−2 d−1 and high doses (HD)—0.3 kJ m−2 d−1 of UV-C irradiation on free, conjugated and bound spermine, spermidine and putrescine in leaves of young pea plants after 7 and 14 days of consecutive treatment was studied. Free polyamine (PA) fractions increased mainly in LD treated plants, while conjugated fractions decreased. Bound fractions accumulated mainly at the end of the experiment (after 14 days of UV-C irradiation). The results are interpreted in relation to the possible role of endogenous bound PAs in the prevention of membrane damage induced by UV-C irradiation. Stress markers (malondialdehyde and electrolyte leakage) increased after 7 days of UV-C treatment, and reached control values by the end of the experiment (mainly after HD treatment). Malondialdehyde concentration correlated negatively with UV-C—induced bound fraction and total PAs. The results support the conclusion that endogenous PAs lessen membrane damage in young pea plants provoked by UV-C irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DAO:

Diamine oxidase

HD:

High dose UV-C

MDA:

Malondialdehyde

LD:

Low dose UV-C

PA:

Polyamine

PAO:

Polyamine oxidase

Put:

Putrescine

Spd:

Spermidine

Spm:

Spermine

TBA:

Thiobarbituric acid

TCA:

Trichloroacetic acid

TLC:

Thin layer chromatography

References

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344. doi:10.1046/j.1365-3040.2001.00778.x

    Article  CAS  Google Scholar 

  • An LZ, Liu GX, Zhang MX, Chen T, Liu YH, Feng HY et al (2004) Effect of enhanced UV-B radiation on polyamine content and membrane permeability in cucumber leaves. Russ J Plant Physiol 51(5):658–662. doi:10.1023/B:RUPP.0000040753.29607.58

    Article  CAS  Google Scholar 

  • Bagni N, Tassoni A (2001) Biosynthesis oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids 20:301–317. doi:10.1007/s007260170046

    Article  PubMed  CAS  Google Scholar 

  • Barka EA, Kalantari S, Makhlouf J, Arul J (2000) Effects of UV-C irradiation on lipid peroxidation markers during ripening of tomato (Lycopersicon esculentum) fruits. Aust J Plant Physiol 27:147–152

    CAS  Google Scholar 

  • Barta C, Kalai T, Hedig K, Vass I, Hedig E (2004) Differences in the ROS-generating efficacy of various ultraviolet wavelengths in detached spinach leaves. Funct Plant Biol 31:23–28. doi:10.1071/FP03170

    Article  CAS  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125. doi:10.1016/S0168-9452(98)00218-0

    Article  CAS  Google Scholar 

  • Casati P, Andreo CS (2001) UV-B and UV-C induction of NADP-malic enzyme in tissues of different cultivars of Phaseolus vulgaris (bean). Plant Cell Physiol 24:621–630

    CAS  Google Scholar 

  • Córdoba C, Munoz JA, Cachorro V, De Carcer IA, Cusso F, Jaque FJ (1997) The detection of solar ultraviolet-C radiation using KCl:Eu2+ thermoluminescence dosemeters. J Phys D Appl Phys 30:3024–3027. doi:10.1088/0022-3727/30/21/017

    Article  Google Scholar 

  • Dhindsa R, Plumb-Dhindsa P, Thorpe T (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101. doi:10.1093/jxb/32.1.93

    Article  CAS  Google Scholar 

  • Ehsanpour AA, Razavizadeh R (2005) Effect of UV-C on drought tolerance of alfalfa (Medicago sativa) callus. Am J Biochem Biotechnol 1:107–110

    Article  CAS  Google Scholar 

  • Gonzalez-Aguilar G, Wang CY, Buta GJ (2004) UV-C irradiation reduces breakdown and chilling injury of peaches during cold storage. J Sci Food Agric 84(5):415–422. doi:10.1002/jsfa.1675

    Article  CAS  Google Scholar 

  • Gonzalez-Aguilar GA, Wang CY, Buta JG, Krizek DT (2001) Use of UV-C irradiation to prevent decay and maintain postharvest quality of ripe `Tommy Atkins’ mangoes. Int J Food Sci Technol 36:767–773. doi:10.1046/j.1365-2621.2001.00522.x

    Article  CAS  Google Scholar 

  • Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34(1):35–45. doi:10.1007/s00726-007-0501-8

    Article  PubMed  CAS  Google Scholar 

  • Ha HC, Sirisoma NS, Kuppusamy P, Zweiler JL, Woster PM, Casero RA Jr (1998) The natural polyamine spermine functions directly as a free scavenger. Proc Natl Acad Sci USA 95:11140–11145. doi:10.1073/pnas.95.19.11140

    Article  PubMed  CAS  Google Scholar 

  • Häder D-P, Kumar HD, Smith RC, Worrest RC (2007) Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci 6:2677–2685

    Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45(6):712–722. doi:10.1093/pcp/pch083

    Article  PubMed  CAS  Google Scholar 

  • Katerova Z, Shopova E, Brankova L, Ivanov S, Karanov E (2008) Alterations in antioxidant enzymes of pea plants in response to prolonged influence of short pulses ultraviolet-C radiations. Compt Rend Acad Bulg Sci 61(3):335–341

    CAS  Google Scholar 

  • Kramer G, Norman H, Krizek D, Mirecki R (1991) Influence of UV-B radiation on polyamines, lipid peroxidation and membrane lipids in cucumber. Phytochemistry 30:2101–2108. doi:10.1016/0031-9422(91)83595-C

    Article  CAS  Google Scholar 

  • Kramer G, Krizek D, Mirecki R (1992) Influence of photosynthetically active radiation and spectral quality on UV-B-induced polyamine accumulation in soybean. Phytochemistry 31:1119–1125. doi:10.1016/0031-9422(92)80245-A

    Google Scholar 

  • Lütz C, Navakoudis E, Seidlitz H, Kotzabasis K (2005) Stimulated solar irradiation with enhanced UV-B adjust plastid- and thylakoid-associated polyamine changes for UV-B protection. Biochim Biophys Acta 1710:24–33. doi:10.1016/j.bbabio.2005.09.001

    Article  PubMed  CAS  Google Scholar 

  • Maharaj R, Arul J, Nadeau P (1999) Effect of photochemical treatment in the preservation of fresh tomato (Lycopersicon esculentum cv. Capello) by delaying senescence. Postharvest Biol Technol 15:13–23. doi:10.1016/S0925-5214(98)00064-7

    Article  CAS  Google Scholar 

  • Martin-Tanguy J (2001) Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul 100:675–688

    Google Scholar 

  • Nara A, Takeuchi Y (2002) Ethylene evolution from tobacco leaves irradiated with UV-B. J Plant Res 115:247–253. doi:10.1007/s10265-002-0031-0

    Article  PubMed  Google Scholar 

  • Procházková D, Wilhelmova N (2007) The capacity of antioxidant protection during modulated ageing of bean (Phaseolus vulgaris L.) cotyledon 1. The antioxidant enzyme activities. Cell Biochem Funct 25:87–95. doi:10.1002/cbf.1271

    Article  PubMed  Google Scholar 

  • Smith J, Burritt D, Bannister P (2001) Ultraviolet-B radiation leads to a reduction in free polyamines in Phaseolus vulgaris L. Plant Growth Regul 35:289–294. doi:10.1023/A:1014459232710

    Article  CAS  Google Scholar 

  • Smith T, Best G (1977) Polyamines in barley seedlings. Phytochemistry 16:841–843. doi:10.1016/S0031-9422(00)86676-5

    Article  CAS  Google Scholar 

  • Stapleton AE (1992) Ultraviolet radiation and plants: burning questions. Plant Cell 4:1353–1358

    Article  PubMed  Google Scholar 

  • Stevens C, Liu J, Khan VA, Lu JY, Wilson CL, Igwegbe ECK et al (1998) Application of hormetic UV-C for delayed ripening and reduction of rhizopus soft rot in tomatoes: the effect of tomatine on storage rot development. J Phytopathol 146(5–6):211–221. doi:10.1111/j.1439-0434.1998.tb04682.x

    Article  CAS  Google Scholar 

  • Tegelberg R, Turtola S, Rousi M, Meier B, Julkunen-Tiittoet R (2006) Soluble polyamines in Salix myrsinifolia and S. myrsinites × S. myrsinifolia plantlets exposed to increased UV-B irradiation and decreased watering. Trees (Berl) 20:299–303. doi:10.1007/s00468-005-0036-0

    Article  CAS  Google Scholar 

  • Torrigiani P, Altamura M, Copitani F, Serafini-Fracasini D, Bagni N (1989) De novo root formation in thin cell layers of tobacco: changes in free and bound polyamines. Physiol Plant 77:294–301. doi:10.1111/j.1399-3054.1989.tb05644.x

    Article  CAS  Google Scholar 

  • Walters D (2003) Resistance to plant pathogens: possible roles for free polyamines and polyamine catabolism. New Phytol 159:109–115. doi:10.1046/j.1469-8137.2003.00802.x

    Article  CAS  Google Scholar 

  • Zacchini M, de Agazio M (2004) Spread of oxidative damage and antioxidative response through cell layers of tobacco callus after UV-C treatment. Plant Physiol Biochem 42:445–450. doi:10.1016/j.plaphy.2004.03.007

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dessislava Todorova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katerova, Z.I., Todorova, D. Endogenous polyamines lessen membrane damages in pea plants provoked by enhanced ultraviolet-C radiation. Plant Growth Regul 57, 145–152 (2009). https://doi.org/10.1007/s10725-008-9330-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-008-9330-3

Keywords

Navigation