Skip to main content
Log in

Potential distribution modeling based on machine learning of Sechium edule (Jacq.) Sw. in Japan

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Species distribution models identify regions with ideal environmental characteristics for the establishment and proliferation of species. The chayote (Sechium edule) is a crop that originated and domesticated in Mexico; however, it is cultivated in different parts of the world due to its nutritional and pharmaceutical importance. The objective of this research was to locate the potential distribution of S. edule in Japan supported on seven machine learning models, to also determine which bioclimatic variables influence its distribution, and which are the most suitable regions for its establishment. Thirty-one occurrence points, elevation, and the bioclimatic variables bio1, bio3, bio4, bio7, bio8, bio12, bio14, bio15, and bio17 were used to infer the models. Hundred percent of the occurrence points coincided with the Cfa climate distributed in Acrisol (60.9%), Andosol (17.4%), Cambisol (13%), Fluvisol (4.35%), and Gleysol (4.35%) soil. The maximum entropy model (Maxent) model reported the highest area under the curve (AUC) value (0.93), while the generalized linear model (GLM) obtained the best true skills statistics (TSS) value (0.84); the super vector machine (SVM) model reported the largest suitability area ≥ 0.5 with 100,394.4 km2. Temperature-related variables were the major contributors to the models and the ones explaining the distribution limits of S. edule in Japan. The coastal eastern prefectures of Kantō, Chūbu, Kinki, Chūgoku, Kyūshū, and Shikoku regions showed a suitability ≥ 0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguiñiga-Sánchez I, Soto-Hernández M, Cadena-Iñiguez J et al (2015) Fruit extract from a Sechium edule hybrid induce apoptosis in leukaemic cell lines but not in normal cells. Nutr Cancer 67:250–257. https://doi.org/10.1080/01635581.2015.989370

    Article  PubMed  Google Scholar 

  • Aguiñiga-Sánchez I, Cadena-Íñiguez J, Santiago-Osorio E et al (2017) Chemical analyses and in vitro and in vivo toxicity of fruit methanol extract of Sechium edule var. nigrum spinosum. Pharm Biol 55:1638–1645. https://doi.org/10.1080/13880209.2017.1316746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguirre-Medina JF, Cadena-Iñiguez J, Olguín-Hernández G et al (2021) Co-Inoculation of Sechium edule (Jacq.) Sw. Plants with Rhizophagus intraradices and Azospirillum brasilense to Reduce Phytophthora capsici. Damage Agric 11:391. https://doi.org/10.3390/agriculture11050391

    Article  CAS  Google Scholar 

  • Andrade-Luna MI, Espinosa-Victoria D, Gómez-Rodríguez O et al (2016) Severity of a Phytophthora capsici strain in chayote Sechium edule plants at growth chamber level. Rev Fito Mex 35(1):40–57

    Google Scholar 

  • Avendaño-Arrazate CH, Cadena-Iñiguez J, Arévalo-Galarza MLC et al (2010). Las variedades del chayote mexicano, recurso ancestral con potencial de comercialización. Grupo Interdisciplinario de Investigación en Sechium edule en México. p 88

  • Ball JW, Robinson TP, Wardell-Johnson GW et al (2020) Fine-scale species distribution modelling and genotyping by sequencing to examine hybridisation between two narrow endemic plant species. Sci Rep 10:1562. https://doi.org/10.1038/s41598-020-58525-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrera-Guzmán LA, Cadena-Iñiguez J, Legaria-Solano JP et al (2022) Potencial distribution of domesticated Sechium edule (Cucurbitaceae) in México. Acta Biol Colomb 27:326–335

    Article  Google Scholar 

  • Beck HE, Zimmermann NE, McVicar TR et al (2018) Present and future Köppen-Geiger climate classification maps at 1-km resolution Sci Data 5, 1–12. https://doi.org/10.1038/sdata.2018.214

  • Bhattacharya M (2013) Machine learning for bioclimatic modelling. Int J Adv Comput Sci Appl 4:1–8

    CAS  Google Scholar 

  • Cadena-Iñiguez J, Olguín- Cadena-Iñiguez J, Soto-Hernández RM, Arévalo-Galarza ML et al (2011) Caracterización bioquímica de variedades domesticadas de chayote Sechium edule (Jacq.) Sw. comparadas con parientes silvestres. Rev. Chapingo. Ser. Hortic. 17:45–55

    Google Scholar 

  • Cadena-Iñiguez J, Soto-Hernández M, Torres-Salas A et al (2013) The antiproliferative effect of chayote varieties (Sechium edule (Jacq.) Sw.) on tumour cell lines. JMPR 7:455–460. https://doi.org/10.5897/JMPR12.866

    Article  Google Scholar 

  • Cadena-Iñiguez J, Arévalo-Galarza MLC (2011) Las variedades de Chayote (Sechium edule (Jacq.) Sw.) y su comercio mundial, 1 st ed. ed. bba, Montecillo, Texcoco.

  • Castro-Rodríguez JM, Toledo-Díaz AM, Rodríguez-Galdón B et al (2015) Caracterización morfológica y composición química de chayotas (Sechium edule) cultivadas en las Islas Canarias (España) Archivos Latinoamericanos de Nutrición 65, 2–17

  • Chandra A, Idrisova A (2011) Convention on Biological Diversity: a review of national challenges and opportunities for implementation. Bio and Conser 20:3295–3316

    Article  Google Scholar 

  • Díaz-de Cerio E, Fernández-Gutiérrez A, Gómez-Caravaca AM et al (2019) New insight into phenolic composition of chayote (Sechium edule (Jacq.) Sw.). Food Chem 295:514–519. https://doi.org/10.1016/j.foodchem.2019.05.146

    Article  CAS  PubMed  Google Scholar 

  • Eskildsen A, le Roux PC, Heikkinen RK et al (2013) Testing species distribution models across space and time: high latitude butterflies and recent warming. Glob Ecol Biogeogr 22:1293–1303. https://doi.org/10.1111/geb.12078

    Article  Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. I J Climatol 37:4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • Fischer G, Nachtergaele F, Prieler S et al (2008) Global Agro-ecological Zones Assessment for Agriculture.

  • Fu A, Wang Q, Mu J et al (2021) Combined genomic, transcriptomic, and metabolomic analyses provide insights into chayote (Sechium edule) evolution and fruit development. Hort Res 8:1–15. https://doi.org/10.1038/s41438-021-00487-1

    Article  CAS  Google Scholar 

  • Gastón A, Garcia-Viñas J, Bravo JA et al (2014) Species distribution models applied to plant species selection in forest restoration: Are model predictions comparable to expert opinion?. New For 1–13. https://doi.org/10.1007/s11056-014-9427-7

  • GBIF Data Portal (2022) http://www.gbif.net. Access 10 April 2022

  • González-Santos R, Cadena-Íñiguez J, Morales-Flores FJ et al (2017) Prediction of the effects of climate change on Sechium edule (Jacq.) Swartz varietal groups in Mexico. Genet Resour Crop Evol 64:791–804. https://doi.org/10.1007/s10722-016-0401-4

    Article  Google Scholar 

  • Hidalgo JM, Fechner CD, Marchevsky JE et al (2016) Determining the geographical origin of Sechium edule fruits by multielement analysis and advanced chemometric techniques. Food Chem 210:228–234. https://doi.org/10.1016/j.foodchem.2016.04.120

    Article  CAS  PubMed  Google Scholar 

  • Hijmans RJ, Elith J (2013) Species distribution modeling with R

  • Hijmans RJ (2020) raster: Geographic Data Analysis and Modeling

  • Jain JR, Timsina B, Satyan KB et al (2017) A comparative assessment of morphological and molecular diversity among Sechium edule (Jacq) Sw accessions in India. 3 Biotech 7:106

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaky E, Gilbert F (2016) Using species distribution models to assess the importance of Egypt’s protected areas for the conservation of medicinal plants. J Arid Environ 135:140–146. https://doi.org/10.1016/j.jaridenv.2016.09.001

    Article  Google Scholar 

  • Lantschner V, Vega G, Corley J (2018) Predicting the distribution of harmful species and their natural enemies in agricultural, livestock and forestry systems: an overview. Int J Pest Manag 65:1–17. https://doi.org/10.1080/09670874.2018.1533664

    Article  Google Scholar 

  • Lira R, Eguiarte LE, Montes-Hernández S (2009a) Proyecto recopilación y análisis de la información existente de las especies de los géneros Cucurbita y Sechium que crecen y/o se cultivan en México

  • Lira R, Téllez O, Dávila P (2009b) The effects of climate change on the geographic distribution of Mexican wild relatives of domesticated Cucurbitaceae. Genet Resour Crop Evol 56(691):703. https://doi.org/10.1007/s10722-008-9394-y

    Article  Google Scholar 

  • Lira SR (1995) Estudios taxonómicos en el género Sechium P. Br. Cucurbitaceae (Tesis Doctoral). Universidad Nacional Autónoma de México, México, D.F

  • Lira R (1996) Chayote Sechium edule (Jacq.) Sw., promoting the conservation and use of underutilized and neglected crops Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute., Rome, Italy

  • Mateo RG, Felicísimo AM, Muñoz J (2011) Species distributions models: a synthetic revision. Rev Chil De Hist Nat 84:217–240. https://doi.org/10.4067/S0716-078X2011000200008

    Article  Google Scholar 

  • Mishra L, Das P (2015) Nutritional Evaluation of Squash (Sechium Edule) Germplasms Collected from Garo Hills of Meghalaya – North East India. Int. J. Environ. Agric. Biotech 8:971–975. https://doi.org/10.5958/2230-732X.2015.00111.4

    Article  Google Scholar 

  • Montes-Galban, E. (2020). Zoning the potential agricultural use in the middle basing of Lujan river, Argentina. Revista Geográfica Digital 19(38) 65–80. https://doi.org/10.30972/geo.19386204

  • Muscarella R, Galante PJ, Soley-Guardia M et al (2014) ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for ecological niche models. Methods Ecol Evol 5:1198–1205. https://doi.org/10.1111/2041-210X.12261

    Article  Google Scholar 

  • Newstrom L (1990) Origin and evolution of chayote, Sechium edule. In: Bates DM, Robinson RW, Jeffrey C (eds) Biology and Utilization of the Cucurbitaceae. Cornell University Press, New York, USA, pp 141–149

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Polce C, Termansen M, Aguirre-Gutiérrez J et al (2013) Species Distribution Models for Crop Pollination: A Modelling Framework Applied to Great Britain. PLoS ONE 8:e76308. https://doi.org/10.1371/journal.pone.0076308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • QGIS Development Team (2020) QGIS Geographic Information System. Open Source Geospatial Foundation Project.

  • Quiroz-Antunez UG, Monterroso-Rivas AI, Calderón-Vega MF et al (2022). Aptitud de los cultivos de café (Coffea arabica L.) y cacao (Theobroma cacao L.) considerando escenarios de cambio climático. LA GRANJA. Revista de Ciencias de la Vida, 36(2), 60–74. https://doi.org/10.17163/lgr.n36.2022.05

  • R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria

  • Rosado-Pérez J, Aguiñiga-Sánchez I, Santiago-Osorio E et al (2019) Effect of Sechium edule var. nigrum spinosum (Chayote) on Oxidative Stress and Pro-Inflammatory Markers in Older Adults with Metabolic Syndrome: An Exploratory Study Antioxidants (Basel) 8, 146. https://doi.org/10.3390/antiox8050146

  • Ryo M, Angelov B, Mammola S et al (2021) Explainable artificial intelligence enhances the ecological interpretability of black-box species distribution models. Ecography 44:199–205. https://doi.org/10.1111/ecog.05360

    Article  Google Scholar 

  • Salazar-Aguilar S, Ruiz-Posadas LDM, Cadena-Iñiguez J et al (2017) Sechium edule (Jacq.) Swartz, a New Cultivar with Antiproliferative Potential in a Human Cervical Cancer HeLa Cell Line. Nutrients 9, E798. https://doi.org/10.3390/nu9080798

  • Schmitt S, Pouteau R, Justeau D et al (2017) ssdm: An r package to predict distribution of species richness and composition based on stacked species distribution models. Methods Ecol Evol 8:1795–1803. https://doi.org/10.1111/2041-210X.12841

    Article  Google Scholar 

  • SIACON (2020) Sistema de Información Agroalimentaria de Consulta Nueva Generación. SIAP, México

  • Verma VK, Pandey A, Jha AK et al (2017) Genetic characterization of chayote [Sechium edule (Jacq.) Swartz.] landraces of North Eastern Hills of India and conservation measure. Physiol Mol Biol Plants 23:911–924. https://doi.org/10.1007/s12298-017-0478-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang HH, Wonkka CL, Treglia ML et al (2015) Species distribution modelling for conservation of an endangered endemic orchid. AoB PLANTS 7. https://doi.org/10.1093/aobpla/plv039

  • White DH, Lubulwa GA, Menz K et al (2001) Agro-climatic classification systems for estimating the global distribution of livestock numbers and commodities. Environm Internat 27(2–3):181–187. https://doi.org/10.1016/S0160-4120(01)00080-0

    Article  CAS  Google Scholar 

  • Williams J, Seo C, Thorne J et al (2009) Using species distribution models to predict new occurrences for rare plants. Divers Distrib 15:565–576. https://doi.org/10.1111/j.1472-4642.2009.00567.x

    Article  Google Scholar 

Download references

Acknowledgements

The Research was initiated with a SATREPS project by JST-JICA, "Diversity Assessment and Development of Sustainable Use of Mexican Genetic Resources" . The research was supported in part by the Plant Transgenic Design Initiative (P-TraD) at Tsukuba Plant Innovation Research Center, University of Tsukuba, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Alejandro Cadena Zamudio.

Ethics declarations

Conficts of interest

All the authors declare that they have no confict of interest.

Human and animal rights

The authors declare that no research involving human participants and/or animals was conducted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iñiguez, J.C., Barrera Guzmán, L.Á., Arévalo Galarza, M.d.L.C. et al. Potential distribution modeling based on machine learning of Sechium edule (Jacq.) Sw. in Japan. Genet Resour Crop Evol 71, 2105–2115 (2024). https://doi.org/10.1007/s10722-023-01739-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-023-01739-w

Keywords

Navigation