Skip to main content
Log in

Simple sequence repeat marker based genetic diversity assessment amongst high essential oil yielding lines of Curcuma caesia Roxb.

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Curcuma caesia Roxb. belonging to Zingiberaceae family is a rhizomatous perennial herb consisting of bluish black rhizome and having vast medicinal and pharmaceutical applications. It is considered as an endangered medicinal plant and native to India. The aim of this study is to assess the molecular diversity among the high rhizome essential oil yielding lines of C. caesia (> 1.5% w/w). The molecular diversity analysis was done by using 45 simple sequence repeat markers amongst the 78 high essential oil yielding lines of C. caesia. The overall percentage of polymorphism amongst the lines was found to be 53%. AMOVA analysis showed 20% and 80% variations among and within the population respectively. Dendrogram constructed using Unweighted Pair Group with Arithmetic Mean (UPGMA) for those high essential oil yielding lines sorted into five major clusters according to their different geographical locations. These five clusters were confirmed using principle component analysis (PCA), based on the Jaccard’s similarity coefficient. The results revealed that these microsatellite markers could be used as successful tool to differentiate the genetic makeup of the crop. Molecular diversity of C. caesia has not been studied till now. So, this is the first scientific report on molecular diversity analysis which may help in the further crop improvement programme and germplasm conservation also.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amalraj VA, Velayudhan KC, Muralidharan VK (1989) A note on the anomalous flowering behavior in Curcuma caesia (Zingiberaceae). J Bombay Nat Hist Soc 86:278–279

    Google Scholar 

  • Baghel SS, Baghel RS, Sharma K, Sikarwar I (2013) Pharmacological activities of Curcuma caesia. Int J Green Pharm 7(1):1–5

    Google Scholar 

  • Banerjee A, Nigam SS (1976) Antifungal activity of the essential oil of Curcuma caesia Roxb. Indian J Med Res 64:1318–1321

    CAS  PubMed  Google Scholar 

  • Baruah J, Pandey SK, Begum T, Sarma N, Paw M, Lal M (2019) Molecular diversity assessed amongst high dry rhizome recovery Ginger germplasm (Zingiber officinale Roscoe) from NE-India using RAPD and ISSR markers. Ind Crop Prod 129:463–471

    CAS  Google Scholar 

  • Baruah J, Pandey SK, Sarmah N, Lal M (2019) Assessing molecular diversity among high capsaicin content lines of Capsicum chinense Jacq. using simple sequence repeat marker. Ind Crop Prod 141:111769. https://doi.org/10.1016/j.indcrop.2019.111769

    Article  CAS  Google Scholar 

  • Borah A, Paw M, Gogoi R, Loying R, Sarma N, Munda S, Pandey SK, Lal M (2019) Chemical composition, antioxidant, anti-inflammatory, anti-microbial and in-vitro cytotoxic efficacy of essential oil of Curcuma caesia Roxb. leaves: an endangered medicinal plant of North East India. Ind Crop Prod 129:448–454

    CAS  Google Scholar 

  • Borah A, Kumar D, Paw M, Begum T, Lal M (2020) A review on ethnobotany and promising pharmacological aspects of an endangered medicinal plant, Curcuma caesia Roxb. Turk J Bot 44:205–213. https://doi.org/10.3906/bot-1910-33

    Article  CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chopra RN, Chopra IC, Handa KL, Kapur LD (1958) Indigenous drugs of India. U.N. Dhur & Sons Pvt. Ltd., Calcutta

    Google Scholar 

  • Das S, Mondal P, Zaman MK (2013) Curcuma caesia Roxb and its medicinal uses: a review. IJRPC 6:117–124

    Google Scholar 

  • Donipati P, Sreeramulu HS (2015) Preliminary phytochemical screening of Curcuma caesia. Int J Curr Microbiol Appl Sci 4:30–34

    CAS  Google Scholar 

  • Dosoky NS, Setzer WN (2018) Chemical composition and biological activities of essential oils of Curcuma species. Nutrients 10(9):1196. https://doi.org/10.3390/nu10091196

    Article  CAS  PubMed Central  Google Scholar 

  • Fathima SN, Ahmad SV, Kumar BR (2015) Evaluation of in vitro thrombolytic activity of ethanolic extract of Curcuma caesia rhizomes. Int J Pharm Res Rev 4(11):50–54

    Google Scholar 

  • Garg SC, Jain RK (1998) Antimicrobial efficacy of essential oil from Curcuma caesia. Ind J Microbiol 38:169–170

    Google Scholar 

  • Gaur PM, Slinkard AE (1990) Genetic control and linkage relations of additional isozyme markers in Chickpea. Theor Appl Genet 80:648–656

    CAS  PubMed  Google Scholar 

  • Han Z, Wang C, Song X, Guo W, Gou J, Li C, Chen X, Zhang T (2006) Characteristics, development and mapping of Gossypium hirsutum derived EST-SSR in allotetraploid cotton. Theor Appl Genet 112:430–439

    CAS  PubMed  Google Scholar 

  • Hasan M, Seyis F, Badani AG, Pons-Kuhnemann J, Friedt W, Lu¨hs W, Snowdon RJ, (2006) Analysis of genetic diversity in the Brassica napus L. gene pool using SSR markers. Genet Resour Crop Evol 53:793–802

    CAS  Google Scholar 

  • Ismail NA, Rafii MY, Mahmud TMM, Hanafi MM, Miah G (2019) Genetic diversity of Torch Ginger (Etlingera elatior) germplasm revealed by ISSR and SSR markers. Bio Med Res Int. https://doi.org/10.1155/2019/5904804

    Article  Google Scholar 

  • Jain A, Parihar DK (2019) Molecular marker based genetic diversity study of wild, cultivated and endangered species of Curcuma from Chhattisgarh region for in situ conservation. Biocatal Agric Biotechnol. https://doi.org/10.1016/j.bcab.2019.101033

    Article  Google Scholar 

  • Karmakar I, Saha P, Sarkar N, Bhattacharya S, Haldar PK (2011) Neu-ropharmacological assessment of Curcuma caesia Roxb. rhizome in experimental animal models. Orient Pharm Exp Med 11:251–255

    Google Scholar 

  • Khare CP (2007) Indian medicinal plants: an illustrated dictionary. Springer, New Delhi

    Google Scholar 

  • Krishnaraj M, Manibhushanrao K, Mathivanan N (2008) Antimicrobial activity of Curcuma caesia Roxb. Proc Andhara Pradesh Acad Sci 12:280–283

    Google Scholar 

  • Lian CL, Wadud MA, Geng Q, Shimatani K (2006) An improved technique for isolating co dominant compound microsatellite. Markers J Plant Res 19:415–441

    Google Scholar 

  • Liu Y, Roy SS, Nebie RHC, ZhangY NMG (2013) Functional food quality of Curcuma caesia, Curcuma zedoaria and Curcuma aeruginosa endemic to North-eastern India. Plant Foods Hum Nutr 68:72–77

    CAS  PubMed  Google Scholar 

  • Mahanta BP, Sut D, Kemprai P, Paw M, Lal M, Haldar S (2020) A 1 H-NMR spectroscopic method for the analysis of thermolabile chemical markers from the essential oil of black turmeric (Curcuma caesia) rhizome: application in post-harvest analysis. Phytochem Anal 31(1):28–36. https://doi.org/10.1002/pca.2863

    Article  CAS  PubMed  Google Scholar 

  • Mamatha K (2016) Studies on genetic diversity in turmeric (Curcuma longa L.) genotypes using morphological and molecular markers. Dissertation, College of Horticulture, Rajendranagar, Hyderabad, India

  • Mann A, Dahiya BS, Boora KS, Nandwal AS, Vashist U (2010) PCR-Based genetic diversity in Chickpea (Cicer arietinum L.) genotypes using random primers. IUP J Genet Evol 3:1–12

    Google Scholar 

  • Mitchess SE, Kresovich S, Jester CA, Hernandez CJ, Szewc- Mcfadden AK (1997) Application of multiplex PCR and fluorescence-based semi-automated allele sizing technology genotyping plant genetic resources. Crop Sci 37:617–624

    Google Scholar 

  • Mohanty S, Panda MK, Acharya L, Nayak S (2014) Genetic diversity and gene differentiation among ten species of Zingiberaceae from Eastern India. 3 Biotech 4(4):383–390. https://doi.org/10.1007/s13205-013-0166-9

    Article  PubMed  Google Scholar 

  • Mukunthan KS, Kumar NVA, Balaji S, Trupti NP (2014) Analysis of essential oil constituents in rhizome of Curcuma caesia Roxb. from South India. J Essent Oil Bear Plant 17:647–651

    CAS  Google Scholar 

  • Nadeem MA, Nawaz MA, Shahid MQ, Dogan Y, Comertpay G, Yildiz M, Baloch FS (2017) DNA markers in plant breeding current status and recent advancements in genomic selection and genome editing. Biotechnol Biotechnol Equip 32:261–285

    Google Scholar 

  • Pandey AK, Chowdhury AR (2003) Volatile constituents of the rhizome oil of Curcuma caesia Roxb. from central India. Flavour Fragr J 18:463–465

    CAS  Google Scholar 

  • Pandey D, Gupta AK (2014) Antibacterial efficacy of Curcuma caesia from Bastar district of Chattisgarh, India. Int J Pharm Sci Res 5:2294–2301

    Google Scholar 

  • Paliwal A (2016) Effectiveness of STMS markers for generating unique DNA profiles in Chickpea (Cicer arietinum L.) germplasm. Int J New Technol Res 2:79–83

    Google Scholar 

  • Paliwal P, Pancholi SS, Patel RK (2011) Pharmacognostic parameters for evaluation of the rhizomes of Curcuma caesia. J Adv Pharm Technol Res 2:56–61

    PubMed  PubMed Central  Google Scholar 

  • Paw M, Gogoi R, Sarma N, Pandey SK, Borah A, Begum T, Lal M (2020) Study of anti-oxidant, anti-inflammatory, genotoxicity, antimicrobial activities and analysis of different constituents found in rhizome essential oil of Curcuma caesia Roxb., collected from North East India. Curr Pharm Biotechnol 21:403–413. https://doi.org/10.2174/1389201020666191118121609

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Google Scholar 

  • Raut JS, Karuppayil SM (2014) A status review on the medicinal properties of essential oils. Ind Crops Prod 62:250–264. https://doi.org/10.1016/j.indcrop.2014.05.055

    Article  CAS  Google Scholar 

  • Rohlf FJ (2000) NTSYS-pc: numerical taxonomy and multivariate analysis system Version 2.1. Exeter Software, Setauket

    Google Scholar 

  • Sahoo A, Jena S, Kar B, Sahoo S, Ray A, Singh S, Nayak S (2017) EST-SSR marker revealed effective over biochemical and morphological scepticism towards identification of specific turmeric (Curcuma longa L.) cultivars. 3 Biotech. https://doi.org/10.1007/s13205-017-0701-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Sahu B, Kenwat R, Chandrakar S (2016) Medicinal value of Curcuma cassiaRoxb: an overview. UKJPB 4:69–74

    CAS  Google Scholar 

  • Sahu R, Saxena J (2018) Bioactive compound from rhizome part of Curcuma caesia. Int J Pharm Sci 3:6–8

    Google Scholar 

  • Sarangthem K, Haokip MJ (2010) Bioactive components in Curcuma caesia Roxb. grown in Manipur. Bioscan 5:113–115

    CAS  Google Scholar 

  • Sasikumar B (2005) Genetic resource of Curcuma: diversity, characterization and utilization. Plant Genet Res 3:230–251

    CAS  Google Scholar 

  • Senan S, Kizhakayil D, Sheeja TE, Sasikumar B, Bhat AI, Parthasarathy VA (2013) Novel polymorphic microsatellite markers from turmeric, Curcuma longa L. (Zingiberaceae). Acta Bot Croat 72(2):407–412. https://doi.org/10.2478/botcro-2013-0002

    Article  CAS  Google Scholar 

  • Sharma N, Verma PP, Murthy SN (2017) Pharmacognostical evaluation and conservation of threatened species Curcuma caesia Roxb. Int J Ayurvedic Med 8:68–72

    Google Scholar 

  • Sigrist MS, Pinheiro JB, Azevedo Filho JA, Zucchi MI (2011) Genetic diversity of turmeric germplasm (Curcuma longa; Zingiberaceae) identified by microsatellite markers. Genet Mol Res 10:419–428

    CAS  PubMed  Google Scholar 

  • Sigrist MS, Pinheiro JB, Azevedo-Filho JA, Colombo CA, Bajay MM, Lima PF, Zucchi MI (2009) Development and characterization of microsatellite markers for turmeric (Curcuma longa). Plant Breed 129:570–573

    Google Scholar 

  • Siju S, Dhanya K, Syamkumar S, Sheeja TE, Sasikumar B, Bhat AI, Parthasarathy VA (2010) Development, characterization and utilization of genomic microsatellite markers in turmeric (Curcuma longa L.). Biochem Syst Ecol 38:641–646. https://doi.org/10.1016/j.bse.2010.08.006

    Article  CAS  Google Scholar 

  • Singh BD (2001) Fundamentals of genetics. Kalyani Publishers, New Delhi

    Google Scholar 

  • Singh S, Panda MK, Nayak S (2012) Evaluation of genetic diversity in turmeric (Curcuma longa L.) using RAPD and ISSR markers. Ind Crop Prod 37:284–291. https://doi.org/10.1016/j.indcrop.2011.12.022

    Article  CAS  Google Scholar 

  • Singh TJ, Patel RK, Patel SN, Patel PA (2018) Molecular diversity analysis in Turmeric (Curcuma longa L.) using SSR markers. Int J Curr Microbiol Appl Sci 7:552–560

    CAS  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    CAS  PubMed  Google Scholar 

  • Tag H, Das AK, Loyi H (2007) Anti inflammatory plant used by Khamti tribes of Lohit district in Arunachal Pradesh. Nat Prod Radiance 4:334–340

    Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    CAS  Google Scholar 

  • The Plant List (2013) Version 1.1. Published on the Internet. http://www.theplantlist.org/. Accessed 1 Sept (2018)

  • Valdes AM, Slatkin M, Freimer NB (1993) Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics 133:737–749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira MLC, Santini L, Diniz AL, Munhoz CF (2016) Microsatellite markers: what they mean and why they are so useful. Genet Mol Biol 39(3):312–328

    PubMed  PubMed Central  Google Scholar 

  • Xia X, Luan LL, Qin G et al (2017) Genome-wide analysis of SSR and ILP markers in trees: diversity profiling, alternate distribution, and applications in duplication. Sci Rep 7(1):17902. https://doi.org/10.1038/s41598-017-17203-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh FC, Yang RC, Boyle T (2000) POPGENE 1.32: a free program for the analysis of genetic variation among and within populations using co-dominant and dominant markers. Department of Ren. Res., Uni Alberta, Canada

  • Zheng WH, Zhuo Y, Liang L, Ding WY, Liang LY, Wang XF (2015) Conservation and population genetic diversity of Curcuma wenyujin (Zingiberaceae), a multifunctional medicinal herb. Genet Mol Res 14:10422–10432

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, CSIR-NESIT, Jorhat (Assam) for providing the lab and field facilities and special thanks to The NMPB, Ministry of AYUSH, Govt. of India, and New Delhi for funding this research work in the form of R&D Project Number AS/01/2016-17

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohan Lal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest on the content of manuscript and study undertaken.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paw, M., Borah, A., Pandey, S.K. et al. Simple sequence repeat marker based genetic diversity assessment amongst high essential oil yielding lines of Curcuma caesia Roxb.. Genet Resour Crop Evol 68, 1345–1358 (2021). https://doi.org/10.1007/s10722-020-01066-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-020-01066-4

Keywords

Navigation