Skip to main content
Log in

New morphotypes structuring Medicago minima (L.) Bartal. populations in various climate environments

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Medicago minima (L.) Bartal. is a member of the Fabaceae family, which grows in arid and semi-arid environments. This species is of great interest, especially from agronomy, however, so little research devoted to this subject. This study aimed to investigate the morphological diversity of the Tunisian M. minima populations using the agro morphological markers. Statistically confirmed, our results suggest the presence of a large variability between all M. minima populations. The inter-populations differences are significant for almost of the pheno-morphological and agronomic studied traits. According to the PCA analysis (based on the individual data of 300 plants) and the HCPC analysis (based on population data), M. minima plants could be classified into three groups. The shape of the plant, internode length, date of blooming are a useful trait to distinguish and classify M. minima plants into three groups (variety or forms). This considerable variation indicates a high genetics potential for selection. Mainly, this study reveals pheno-morphological traits that discriminate M. minima varieties and highlight their agronomic traits. These results could be useful for the botanical description for the conservation of M. minima’s natural resources. It can also provide valuable information for breeding purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bartalini B (1776) Catalogo delle Piante che nascono spontaneamente intorno alla citta di siena. Rossi

  • Brundu GAD, Camarda I, Caredda M, Garau G, Maltoni SL, Deiana P (2004) A contribution to the study of the distribution of Medicago-Sinorhizobium symbiosis in Sardinia (Italy). Agricoltura Mediterranea 134:33–48

    Google Scholar 

  • Busso CA, Bentivegna DJ, Fernández OA (2013) A review on invasive plants in rangelands of Argentina. Interciencia 38(2):95–103

    Google Scholar 

  • Cavers PB (1983) Seed demography. Can J Bot 61(12):3578–3590

    Article  Google Scholar 

  • Chebouti A, Bekki A, Mefti M, Meziani N (2015) Characterization and agronomic evaluation of local populations of M minima (L.) collected in Algerian Steppe Area. J Agron 14(4):212–219

    Article  CAS  Google Scholar 

  • De Mendiburu F (2017) agricolae: Statistical Procedures for Agricultural Research. R package version 1.2-8. https://CRAN.R-project.org/package=agricolae

  • Del Pozo A, Aronson J (2000) Ecophysiology of annual legumes. Cahiers Options Mediterr 45:223–230

    Google Scholar 

  • Dölarslan M, Gül E, Erşahin S (2018) Endemic vascular plants of marble and serpentine parent materials in semiarid grassland. Turkish J Agri Food Sci Technol 6(6):693–698. https://doi.org/10.24925/turjaf.v6i6.693-698.1703

    Article  Google Scholar 

  • Dorry MA (2010) Forage production of eight annual medic cultivars under rainfed conditions of Golestan Province. Journal of Agricultural Science and Technology 10:185–190

    Google Scholar 

  • El Hansali ME, Zinelabidine LH, Haddioui A (2007) Variabilité des caractères morphologiques des populations naturelles de Medicago truncatula Gaertn. au Maroc. Acta Botanica Gallica 154(4):643–649. https://doi.org/10.1080/12538078.2007.10516085

    Article  Google Scholar 

  • Fresnillo-Fedorenko DE, Fernández OA, Busso CA, Elia OE (1996) Phenology of Medicago minima and Erodium cicutarium in semi-arid Argentina. Journal of Arid Environments 33(4):409

    Article  Google Scholar 

  • Fresnillo-Fedorenko DE, Cocks PS, Bowden JW (2011) Ecological factors affecting distribution and abundance of Medicago minima. Crop and Pasture Science 62(7):581–590

    Article  Google Scholar 

  • Fox J (2005) Getting started with the R commander: a basic-statistics graphical user interface to R. J Stat Softw 14(9):1–42

    Article  Google Scholar 

  • Fox J (2016) Using the R commander: a point-and-click interface for R. Chapman and Hall/CRC, New York

    Book  Google Scholar 

  • Giorgetti HD, Manuel Z, Montenegro OA, Rodríguez GD, Busso CA (2000) Phenology of some herbaceous and woody species in central, semiarid Argentina. Phyton-Revista Internacional de Botanica Experimental 69:91–108

    Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: Importance and constraints to greater use. Plant Physiol 131(3):872–877. https://doi.org/10.1104/pp.017004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graziano D, Di Giorgio G, Ruisi P, Amato G (2010) Variation in pheno-morphological and agronomic traits among burr medic (Medicago polymorpha L.) populations collected in Sicily, Italy. Crop Pasture Sci 61(1):59–69. https://doi.org/10.1071/CP09116

    Article  Google Scholar 

  • Haddioui A, Zinelabidine LH, Nouri M et al (2012) Genetic diversity of natural populations of Medicago truncatula in Morocco using isozyme polymorphism. World Journal of Agricultural Sciences 8(1):13–19

    CAS  Google Scholar 

  • Harper JL, White J (1974) The demography of plants. Annu Rev Ecol Syst 5:419–463

    Article  Google Scholar 

  • Hautier Y, Isbell F, Borer ET et al (2018) Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nat Ecol Evol 2(1):50. https://doi.org/10.1038/s41559-017-0395-0

    Article  PubMed  Google Scholar 

  • Interrante SM, Singh R, Islam MA, Stein JD, Young CA, Butler TJ (2011) Effectiveness of Sinorhizobium inoculants on annual medics. Crop Sci 51:2249–2255. https://doi.org/10.2135/cropsci2011.02.0076

    Article  Google Scholar 

  • Jabri C, Sbei H, Zitouna N, Trifi-Farah N, Zoghlami KA (2016) Pheno-morphological variation, genetic diversity and population structure of Tunisian Echinus Medic (Medicago ciliaris L.). Genet Mol Res 15(3):gmr15038595. https://doi.org/10.4238/gmr.15038595

    Article  Google Scholar 

  • Judd WS, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ (2008) Plant systematics: a phylogenetic approach. Sinauer Associates Inc, Massachusetts

    Google Scholar 

  • Karaköy T, Baloch FS, Toklu F, Özkan H (2014) Variation for selected morphological and quality-related traits among 178 faba bean landraces collected from Turkey. Plant Genet Resour 12(1):5–13

    Article  Google Scholar 

  • Linnaeus C (1754) Flora Anglica. Laur. Magnus Höjer, Stockholm

  • Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25(1):1–18

    Article  Google Scholar 

  • Muir JP, Ocumpaugh WR, Butler TJ (2005) Trade-offs in forage and seed parameters of annual Medicago and Trifolium species in north-central Texas as affected by harvest intensity. Agron J 97(1):118–124. https://doi.org/10.2134/agronj2005.0118

    Article  Google Scholar 

  • Murtagh F, Legendre P (2014) Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s Criterion? J Classif 31(3):274–295. https://doi.org/10.1007/s00357-014-9161-z

    Article  Google Scholar 

  • Nadeem MA, Nawaz MA, Shahid MQ, Doğan Y, Comertpay G, Yıldız M, Hatipoğlu R, Ahmad F, Alsaleh A, Labhane N, Özkan H (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol Biotechnol Equip 32(2):261–285

    Article  CAS  Google Scholar 

  • Nagashima H, Hikosaka K (2011) Plants in a crowded stand regulate their height growth so as to maintain similar heights to neighbours even when they have potential advantages in height growth. Ann Bot 108(1):207–214. https://doi.org/10.1093/aob/mcr10

    Article  PubMed  PubMed Central  Google Scholar 

  • Ocumpaugh WR, Ueckert DN, Muir JP, Butler TJ, Reed RL (2007) Registration of ‘Devine’ Little Burr Medic. J Plant Regist 1:31–32. https://doi.org/10.3198/jpr2006.05.0338crc

    Article  Google Scholar 

  • Ponert J (1973) Neue taxonomische Kombinationen, Kategorien und Taxa vor allem der türkischen Arten. Feddes Repertorium 83(9–10):617–644. https://doi.org/10.1002/fedr.19730830902

    Article  Google Scholar 

  • Pugnaire F, Valladares F (2007) Functional plant ecology. CRC Press, Boca Raton

    Book  Google Scholar 

  • R Core Team (2018) R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Austria 2015. https://www.R-project.org/

  • Schmalenbach I, Zhang L, Reymond M, Jiménez-Gómez JM (2014) The relationship between flowering time and growth responses to drought in the Arabidopsis Landsberg erecta x Antwerp-1 population. Front Plant Sci 5:609. https://doi.org/10.3389/fpls.2014.00609

    Article  PubMed  PubMed Central  Google Scholar 

  • Shabani G, Chaichi MR, Ardakani MR, Friedel JK, Khavazi K (2016) Effect of different fertilizing and farming systems in annual medic (Medicago scutellata ‘Robinson’) on soil organic matter and nutrients status. Acta Agriculturae Slovenica 109(1):5–13. https://doi.org/10.14720/aas.2017.109.1.01

    Article  CAS  Google Scholar 

  • Singh M, Singh VRR, Zaffar SN, Kumar R (2018) Altitude wise variation in seedling characteristics of Picea smithiana (wall.) Boiss. In forests of south Kashmir, j&k, India. Indian For 144(1):1–5

    Google Scholar 

  • Small E (2011) Alfalfa and relatives: evolution and classification of Medicago. NRC Research Press, Ottawa

    Google Scholar 

  • Woods M (2017) Orcutt J (2017) The genus Medicago (Fabaceae) in Alabama. Phytoneuron 52:1–17

    Google Scholar 

  • Xue AO, Zhao MH, Qian ZH et al (2013) Study on plant morphological traits and production characteristics of super high-yielding soybean. J Integr Agric 12(7):1173–1182. https://doi.org/10.1016/S2095-3119(13)60444-X

    Article  Google Scholar 

  • Zhu Y, Sheaffer CC, Russelle MP, Vance CP (1998) Dry matter accumulation and dinitrogen fixation of annual Medicago species. Agron J 90:103–108. https://doi.org/10.2134/agronj1998.00021962009000010019x

    Article  Google Scholar 

  • Zoghlami A, Hassen H, Seklani H, Robertson L, Salkini AK (1996) Distribution des luzernes annuelles en Tunisie centrale en fonction des facteurs édaphiques et climatiques. Fourrages 145:5–16

    Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marghali Sonia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

The authors declare that the outcomes described in this article come from their original research work and were entirely produced by themselves, in accordance with moral and ethical standards, without any plagiarism or false data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabtni, S., Sdouga, D., Hakim, L. et al. New morphotypes structuring Medicago minima (L.) Bartal. populations in various climate environments. Genet Resour Crop Evol 67, 1867–1883 (2020). https://doi.org/10.1007/s10722-020-00946-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-020-00946-z

Keywords

Navigation