Skip to main content

Rosmarinus officinalis L.: Rosemary

  • Chapter
  • First Online:
Medicinal, Aromatic and Stimulant Plants

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 12))

Abstract

Rosemary, a well-known Mediterranean aromatic evergreen, up to 3-m-high perennial shrub, is widely cultivated since ancient times for medicinal, culinary and ornamental purposes. The Mediterranean genus Rosmarinus L. (Lamiaceae) includes three species; among them the most common and most widely distributed is Rosmarinus officinalis L. “The dew of the sea” (the meaning of rosemary) with small white, pink to bluish hermaphrodite flowers can grow and reproduce under diverse climate and soil conditions. It can be found in an abundant morphological and biochemical variation (e.g. growth habit, leaf size, flower size and colour, volatile compounds). This variation can be explained by high phenotypic plasticity and genetic diversity within and among populations. Self-compatibility is predominant in rosemary breeding system, but automatic self-pollination is prevented by strong protandry in combination with nonsimultaneous maturation of anthers and stigma. The proportion of male-sterile flowers in R. officinalis shows large temporal variation during the breeding season. This temporal gynodioecy, the length of the flowering season and flowering synchrony of individuals within populations all favour high rates of cross-pollination, therefore increasing allogamy rates.

Characterization and evaluation of natural diversity are still used in rosemary breeding programmes. Polymorphic markers are used to understand the diversity patterns and relationship between different varieties. The mostly used breeding method for developing new cultivars or varieties is clone and line selection using wild population of rosemary as a starting material. Selection under environmental pressure is still a challenge in rosemary breeding.

Propagation by seed is not effective considering cross-pollination and typically very slowly seed germination. Among the methods of vegetative propagation, propagation by cuttings is the easiest and widely applied method. In vitro propagation is used to get higher multiplication rates from selected plant materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe F, Yamauchi T, Nagao T, Kinjo J, Okabe H, Higo H, Akahane H (2002) Ursolic acid as a trypanocidal constituent in rosemary. Biol Pharm Bull 25:1485–1487

    CAS  PubMed  Google Scholar 

  • Amaral GP, Mizdal CR, Silvio Stefanello T, Sebastian A, Mendez L, Puntel RL, Matiko M, de Campo A, Alexandre F, Soares A, Fachinetto R (2018) Antibacterial and antioxidant effects of Rosmarinus officinalis L. extract and its fractions. J Tradit Complement Med XXX:1–10

    Google Scholar 

  • Andrade JM, Faustino C, Garcia C, Ladeiras D, Reis CP, Rijo P (2018) Rosmarinus officinalis L.: an update review of its phytochemistry and biological activity. Future Sci OA 4(4):FSO283. https://www.future-science.com/doi/pdf/10.4155/fsoa.-2017-0124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anon (2009) WHO monographs on selected medicinal plants, vol 4. WHO, Geneva, pp 284–308

    Google Scholar 

  • APAT (Agency for the Protection of the Environment and for Technical Services) (2003) Seed propagation of Mediterranean trees and shrubs. (ANPA Handbook ‘Propagation of Mediterranean trees and shrubs from seed’ Propagazione per seme di alberi e arbusti della flora mediterranea. BetiPiotto and Anna Di Noi Eds, 2001) I.G.E.R. srl. Roma. 47–48. www.isprambiente.gov.it/contentfiles/00003500/3512…/file

    Google Scholar 

  • Arnold N, Valentini G, Bellomaria B, Hocine L (1997) Comparative study of the essential oils from Rosmarinus eriocalyx Jordan & Fourr. from Algeria and R. officinalis L. from other countries. J Essent Oil Res 9:167–175

    CAS  Google Scholar 

  • Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperm. New Physiol 179:975–986

    Google Scholar 

  • Begum A, Sandhya S, Shaffath S, Vinod K, Reddy S, Banji D (2013) An in-depth review on the medicinal flora Rosmarinus officinalis (Lamiaceae). Acta Sci Pol Technol Aliment 12(1):61–73. www.food.actapol.net

    CAS  PubMed  Google Scholar 

  • Bentham GL (1876) In: Bentham G, Hooker JD (eds) Genera plantarum, vol 2. Reeve, London, pp 1160–1196

    Google Scholar 

  • Birtić S, Dussort P, Pierre FX, Bily AC, Roller M (2015) Molecules of interest, carnosic acid. Phytochemistry 115:9–19

    PubMed  Google Scholar 

  • Bolòs O, Vigo J, Masalles RM, Ninot JM (2005) Flora manual dels Països Catalans, 3rd edn. Pòrtic, Barcelona

    Google Scholar 

  • Briquet JL (1987) In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien nebst ihrer Gattungen und wichtigeren Arten, vol IV. Engelmann, Leipzig, pp 183–287

    Google Scholar 

  • Del Pilar Sánchez-Camargo A, Herrero M (2017) Rosemary (Rosmarinus officinalis) as a functional ingredient: recent scientific evidence. Curr Opin Food Sci 14:13–19

    Google Scholar 

  • Domokos J, Hethelyi E, Palinkas J, Szirmai S, Tulok MH (1997) Essential oil of rosemary (Rosmarinus officinalis L.) of Hungarian origin. J Essent Oil Res 9:41–45

    CAS  Google Scholar 

  • Dong Y, Wang R, Li Z, Qi C, Liu B, Duani R, Liu Y (2012) Callus Induction and plant regeneration from rosemary leaves. Biosci Methods 3:21–26. https://doi.org/10.5376/bm.2012.03.0003

    Article  Google Scholar 

  • Drew BT et al (2017) Recircumscription of Salvia. Salvia united: The greatest good for the greatest number, vol 66(1). International Association for Plant Taxonomy (IAPT), Taxon, pp 133–145

    Google Scholar 

  • EFSA (2008) Use of rosemary extracts as a food additive. European Food Safety Authority, Brussels, pp 2003–2140

    Google Scholar 

  • ESCOP (2003) ESCOP Monographs. The scientific Foundation for Herbal Medicinal Products, 2nd edn. European Scientific Cooperative on Phytotherapy and Thieme, Exter (UK)

    Google Scholar 

  • European Pharmacopoeia, 5th edn, Main Volume 5.0, 2005 with Supplements 5.1 and 5.2, Council of Europe, Strasbourg, 2004, p. 2377

    Google Scholar 

  • Farooqi A, Sreeramu BS (2001) Rosemary in cultivation of medicinal and aromatic crops. University Press, pp 23–25

    Google Scholar 

  • Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollinisation syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403

    Google Scholar 

  • Ferrer-Gallego PP, Ferrer-Gallego R, Rosselló R, Peris JB, Guillén A, Gómez J, Laguna E (2014) A new subspecies of Rosmarinus officinalis (Lamiaceae) from the eastern sector of the Iberian Peninsula. Phytotaxa 172:61–70

    Google Scholar 

  • Figueiredo AC, Barroso JG, Pedro LG, Scheffer JJC (2008) Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragr J 23:213–226

    CAS  Google Scholar 

  • Garcia-Fayos P, Castellanos MC, Segarra-Moragues JG (2018) Seed germination and seedling allogamy in Rosmarinus officinalis: the cost of inbreeding. Plant Biol 20:627–635

    CAS  PubMed  Google Scholar 

  • Gopal RM, Munnusingh RS, Chandrashekar R, Sushil Kumar S (2000) Rosemary oil: Prospects of its production in India. J Med Arom Pl Sci 22:298–301

    Google Scholar 

  • Gouyon PH, Vernet P, Guillerm JL, Valdeyron G (1986) Polymorphisms and environment: the adaptive value of the oil polymorphisms in Thymus vulgaris L. Heredity 57:59–66

    Google Scholar 

  • Greuter, W, Burdet HM, Long G (1986) Med-checklist. 3. Dicotyledones (Convolvulaceae -Labiatae). Geneva & Berlin

    Google Scholar 

  • Harley RM, Atkins S, Budantsev AL, Cantino PD, Conn BJ, Grayer RL (2004) In: Kadereit JW (ed) The families and genera of vascular plants. VII. Flowering plants: Dicotyledons: Lamiales (except Acanthaceae including Avicenniaceae). Springer, Berlin, pp 167–275

    Google Scholar 

  • Hennig F, Kadner R, Junghanns W, Weinreich B (2002) Produktion von Rosmarinjungpflanzen (Rosmarinus officinalis L.). Erste Untersuchungen zur In-vitro-Verklonung. Zeitschrift für Arznei- und Gewürzpflanzen 7:377–381

    Google Scholar 

  • Hernández Bermejo JE, Clemente Muñoz M (eds.) (1994) Protección de la Flora en Andalucía. Consejería de Cultura y Medio Ambiente, Junta de Andalucía, Sevilla

    Google Scholar 

  • Herrera J (1986) Flowering and fruiting phenology in the coastal shrublands of Doñana, south Spain. Vegetatio 68:91–98

    Google Scholar 

  • Herrera J (1987) Flower and fruit biology in southern Spanish Mediterranean shrublands. Ann Mo Bot Gard 74:69–78

    Google Scholar 

  • Herrera J (2005) Flower size variation in Rosmarinus officinalis: individuals, populations and habitats. Ann Bot 95:431–437

    PubMed  Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276

    Google Scholar 

  • Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112

    Google Scholar 

  • Hidalgo PJ, Hesse M, Ubera JL, Frosch-Radivo A (1999) Microsporogenesis in male sterile Rosmarinus officinalis L. (Lamiaceae), an ultrastructural study. Grana 38:343–355

    Google Scholar 

  • Hidalgo-Fernández PJ, Ubera-Jiménez JL (2001) Inbreeding depression in Rosmarinus officinalis L. Int J Dev Biol 45(S1):43–44

    Google Scholar 

  • Hidalgo-Fernández PJ, Ubera JL, Tena MT, Valcarcel M (1998a) Determination of carnosic acid content in wild and cultivated Rosmarinus officinalis. J Agric Food Chem 46(7):2624–2627

    Google Scholar 

  • Hidalgo-Fernández PJ, Perez-Vicente R, Maldonado JM, Ubera-Jiménez JL (1998b) Mitochondrial DNA polymorphism and gynodioecy in a natural population of Rosmarinus officinalis L. Isr J Plant Sci 47:77–83

    Google Scholar 

  • Horovitz A (1980) Gynodioecy as a possible population strategy for increasing reproductive output. Theor Appl Genet 57:11–15

    CAS  PubMed  Google Scholar 

  • Ibrahim KM, Mahmood TN, Barazanchi FM (2011) Molecular Differentiation between two varieties of Rosmarinus officinalis grown in north east region of Iraq. Bull UASVM Hortic 68(1):367–374

    Google Scholar 

  • Johnson BM, Bolton JL, Van Breemen RB (2001) Screening Botanical Extracts for Quinoid Metabolites. Chem Res Toxicol 14(11):1546–1551

    CAS  PubMed  Google Scholar 

  • Junghanns W, Hammer M (2017) Entwicklung eines neuen auf Carnosolsäure standardisierten Rosmarinus officinalis L. 27. Bernburger Winterseminar Arznei- und Gewürzpflanzen. Verein für Arznei- und Gewürzpflanzen SALUPLANTA e.V. Bernburg, 25–26.

    Google Scholar 

  • Knight CA, Rachel BC, Gotzenberger L, Dann L, Beaulieu JM (2010) On the relationship between pollen size and genome size. J Bot 1–7

    Google Scholar 

  • Kumar N, Armugam R (1980) Effect of growth regulators on rooting of rosemary (Rosmarinus officinalis). Indian Perfum 24(4):210–213

    CAS  Google Scholar 

  • Lamborn E, Cresswell JE, Macnair MR (2005) The potential for adaptative evolution of pollen grain size in Mimulus guttatus. New Physiol 167:289–296

    Google Scholar 

  • Leelavathi D, Kuppan Y, Kuppan N (2013) An efficient protocol for in vitro aseptic shoot multiplication and plant regeneration of Rosmarinus officinalis- an important medicinal plant using axillary bud. Int J Pure App Biosci 1(6):51–55

    Google Scholar 

  • Lohwasser U, Börner A, Chizzola R, Novak J (2018) Innerartliche Variabilität bei der Gaterslebener Genbankkollektion von Rosmarin (Rosmarinus officinalis L.) Posterbeitrag Themenkreis E: Wildsammlung, Inkulturnahme, Züchtung. 8. Tagung Arznei- und Gewürzpflanzenforschung. VIIIth Conference of Medicinal and Aromatic Plant Research, 10.-13

    Google Scholar 

  • Luis JC, Johnson CB (2005) Seasonal variations of rosmarinic and carnosic acids in rosemary extracts. Analysis of their in vitro antiradical activity. Span J Agric Res 3(1):106–112

    Google Scholar 

  • Madeiras AM, Boyle TH, Autio WR (2009) Stratification, gibberellic acid, scarification, and seed lot influence on rosemary seed germination. Seed Technol 31:55–65

    Google Scholar 

  • Maire R (1932) Contribution a l'étude de la Flore de l'Afrique du Nord. Bull Soc Hist Nat Afr Nord 23:163–222

    Google Scholar 

  • Mateu-Andrés I, Aguilella A, Boisset F, Currás R, Guara M, Laguna E, Marzo A, Puche MF, Pedrola J (2013) Geographical patterns of genetic variation in rosemary (Rosmarinus officinalis) in the Mediterranean basin. Bot J Linn Soc 171:700–712. https://doi.org/10.1111/boj.12017

    Article  Google Scholar 

  • Moon HK, Vinckier S, Walker JB, Smets E, Huysmans S (2008) A search for phylogenetically informative pollen characters in the subtribe Salviinae (Mentheae: Lamiaceae). Int J Plant Sci 169:455–471

    Google Scholar 

  • Moon HK, Smets E, Huysmans S (2010) Phylogeny of tribe Mentheae (Lamiaceae): The story of molecules and micromorphological characters. TAXON 59(4):1065–1076

    Google Scholar 

  • Morales R (2010) Rosmarinus L. In: Morales R, Quintanar A, Cabezas F, Pujadas AJ, Cirujano S (eds) Flora Iberica XII, Madrid, Real JardínBotánico de Madrid, CSIC, pp 327–331

    Google Scholar 

  • Mulas M, Mulas G (2005) Cultivar Selection from rosemary (Rosmarinus officinalis L.) spontaneous populations in the Mediterranean area. Proc. WOCMAP III, Vol 2: Conservation Cultivation & Sustainable Use of MAPs: A. Jatisatienr, T. Paratasilpin, S. Elliott, V. Anusarnsunthorn, D. Wedge, L.E. Craker and Z.E. Gardner, eds. ISHS. Acta Hort 676:127–133. http://www.actahort.orgbooks/676/

    Google Scholar 

  • Munné-Bosch S, Alegre L, Schwarz K (2000) The formation of phenolic diterpenes in Rosmarinus officinalis L. under Mediterranean clime. Eur Food Res Technol 210. Springer-Verlag:263–269

    Google Scholar 

  • Owens SJ, Ubera-Jiménez JL (1992) Breeding systems in Labiatae. In: Harley RM, Reynolds T (eds) Advances in Labiatae science. Royal Botanic Gardens, Kew, pp 257–280

    Google Scholar 

  • Pintore G, Usai M, Bradesi P, Juliano C, Boatto G, Tomi F, Casanova J (2002) Chemical composition and antimicrobial activity of Rosmarinus officinalis L. oils from Sardinia and Corsica. Flavour Fragr J 17:15–19

    CAS  Google Scholar 

  • ProGuiRosemary (2012) Department of Agriculture, Forestry and Fisheries Directorate communication Services South Africa Rosemary Production. In: Essential oil crops, Production guidelines for rosemary. http://www.nda.agric.za/docs/Brochures/ProGuiRosemary

  • Ravikumar P (2000) Local and export market of herbal spices. Spice India 13:5–7

    Google Scholar 

  • Richheimer SL, Bernart MW, King GA, Kent MC, Beiley DT (1996) Antioxidant activity of lipid-soluble phenolic diterpenes from rosemary. J Am Oil Chem Soc 73:507–514

    CAS  Google Scholar 

  • Rosselló JA, Sáez L (2000) Index Balearicum: An annotated check-list of the vascular plants described from the Balearic Islands. Collect Bot (Barcelona) 25(1):3–203

    Google Scholar 

  • Rosselló JA, Cosín R, Boscaiu M, Vicente O, Martínez I, Soriano P (2006) Intragenomic diversity and phylogenetic systematics of wild rosemary (Rosmarinus officinalis L. s.l., Lamiaceae) assessed by nuclear ribosomal DNA sequences (ITS). Plant Syst Evol 262:1–12. https://doi.org/10.1007/s00606-006-0454-5

    Article  CAS  Google Scholar 

  • Rosúa JL (1981) El complejo Rosmarinus eriocalyx-tomentosus en la Peninsula Ibérica. Anales del Jardin Botánico de Madrid 37(2):587–595

    Google Scholar 

  • Rosúa JL (1986) Contribución al estudio del género Rosmarinus L. en el Mediterráneo Occidental. Lagascalia 14(2):179–187

    Google Scholar 

  • Ryding O (2010) Pericarp structure and phylogeny of tribe Mentheae (Lamiaceae). Pl Syst Evol 285:165–175. https://doi.org/10.1007/s00606-010-0270-9

    Article  Google Scholar 

  • Samuelsson G, Bohlin L (2001) Drugs of Natural Origin: A Treatise of Pharmacognosy, 6th edn. Swedish Pharmaceutical Press, Stockholm, Sweden

    Google Scholar 

  • Santana-Meridas PO, Izquierdo-Melero MME, Astraka K, Tarantilis PA, Herraiz-Penalver S-VDR (2014) Polyphenol composition, antioxidant and bioplaguicide activities of the solid residue from hydrodistillation of Rosmarinus officinalis L. Ind Crop Prod 59:125–134

    CAS  Google Scholar 

  • Satyal P, Jones TH, Lopez EM, McFeeters RL, Ali NAA, Mansi I, Setzer WN (2017) Chemotypic characterization and biological activity of Rosmarinus officinalis. Foods 6:2–15

    Google Scholar 

  • Schwarz K, Ternes W (1992) Antioxidative constituents of Rosmarinus officinalis and Salvia officinalis. Z Lebensm Unters Forsch 195:95–98

    CAS  PubMed  Google Scholar 

  • Segarra-Moragués JG, Gleiser G (2009) Isolation and characterisation of di and tri nucleotide microsatellite loci in Rosmarinus officinalis (Lamiaceae), using enriched genomic libraries. Conserv Genet 10:571–575

    Google Scholar 

  • Segarra-Moragués JG, Carrión Marco Y, Castellanos MC, Molina MJ, García-Fayos P (2016) Ecological and historical determinants of population genetic structure and diversity in the Mediterranean shrub Rosmarinus officinalis. Bot J Linn Soc 180:50–63

    Google Scholar 

  • Stefanovits-Bányai1 (2003) Antioxidant effect of various rosemary (Rosmarinus officinalis L.) clones. Acta Biologica Szegediensis Symposium 47(1-4):111–113. http://www.sci.u-szeged.hu/ABS

    Google Scholar 

  • Svoboda P, Deans KG (1992) A study of the variability of Rosemary and Sage and their volatile oils on the British market: Their antioxidative properties. Flavour Fragr J 7:81–87

    CAS  Google Scholar 

  • Torres C (2000) Pollen size evolution: correlation between pollen volume and pistil length. Sex Plant Reprod 12:365–370

    Google Scholar 

  • Turrill WB (1920) The genus Rosmarinus. Kew Bull:105–107

    Google Scholar 

  • Ubera-Jiménez JL, Hidalgo-Fernández PJ (1992) Temporal gynodioecy in Rosmarinus officinalis. In: Harley RM, Reynolds T (eds) Advances in Labiatae science. Royal Botanical Gardens Kew, London, UK, pp 281–289

    Google Scholar 

  • Valverde J et al (2016) Inter-annual maintenance of the fine-scale genetic structure in a biennial plant. Sci Rep 6:37712. https://doi.org/10.1038/srep37712. http://www.nature.com/srep

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagstaff SJ, Olmstead RG, Cantino PD (1995) Parsimony analysis of cpDNA restriction site variation in subfamily Nepetoideae (Labiatae). Am J Bot 82:886–892

    CAS  Google Scholar 

  • Walker JB, Sytsma KJ (2007) Staminal evolution in the genus Salvia (Lamiaceae): molecular phylogenetic evidence for multiple origins of the staminal lever. Ann Bot 100:375–391

    CAS  PubMed  Google Scholar 

  • Walker JB, Sytsma KJ, Treutlein J, Wink M (2004) Salvia (Lamiaceae) is not monophyletic: implications for the systematics, radiation, and ecological specializations of Salvia and tribe Mentheae. Am J Bot 91:1115–1125

    PubMed  Google Scholar 

  • Wellwood CR, Cole RA (2004) Relevance of Carnosic Acid Concentrations to the Selection of Rosemary, Rosmarinus officinalis (L.), Accessions for Optimization of Antioxidant Yield. J Agric Food Chem. 6; 52(20). Banbury, Oxfordshire OX17 1DF, United Kingdom. 6101-6107. https://doi.org/10.1021/jf035335p. https://www.ncbi.nlm.nih.gov/pubmed/15453673

  • Wilson P, Bounopane M, Allison TD (1996) Reproductive biology of the monoecious clonal shrub Taxus canadensis. Bull Torrey Bot Club 123:7–15

    Google Scholar 

  • Wunderlich R (1967) EinVorschlag zu einer natürlichen Gliederung der Labiaten auf Grund der Pollenkörner, der Samenentwicklung und der reifen Samen. Österr Bot Z 114:383–483

    Google Scholar 

  • Yang R, Potter T, Curtis O, Sherry K (2009) Tissue culture-based selection of high rosmarinic acid producing clones of Rosemary (Rosmarinus officinalis L.) using Pseudomonas Strain F. Food Biotechnol 11(1):73–88. https://doi.org/10.1080/08905439709549923

    Article  Google Scholar 

  • Zaouali Y, Boussard M (2008) Isozyme markers and volatiles in Tunisian Rosmarinus officinalis L. (Lamiaceae): A comparative analysis of population structure. Biochem Syst Ecol 36:11–21

    CAS  Google Scholar 

  • Zaouali Y, Messaoud C, Ben-Salah A, Boussard M (2005) Oil composition variability among populations in relationship with their ecological areas in Tunisian Rosmarinus officinalis L. Flavour Fragr J 20:512–520

    CAS  Google Scholar 

  • Zeineb GS (2012) A guide to medicinal plants in North Africa. IUCN, Malaga, pp 235–237

    Google Scholar 

  • Zhang SH, Weng JZ, Lin JB, Chen YK, Lin JG (2006) Techniques for tissue culture and rapid propagation of rosemary (Rosmarinus officinalis L.). Guangxi Agric Sci 37(2):111–112

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hammer, M., Junghanns, W. (2020). Rosmarinus officinalis L.: Rosemary. In: Novak, J., Blüthner, WD. (eds) Medicinal, Aromatic and Stimulant Plants. Handbook of Plant Breeding, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-38792-1_15

Download citation

Publish with us

Policies and ethics