Skip to main content
Log in

Identification and characterization of Italian common figs (Ficus carica) using nuclear microsatellite markers

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Common fig (Ficus carica L.) is one of the most ancient domesticated species, originated, supposedly in Arabia, from where it diffused to the Middle East and Asia, and to the Mediterranean basin, where it greatly diffused. More than 600 fig varieties have been described, but it is conceivable that this number is underestimated. Along all the Italian territory, there is a rich germplasm of fig composed of a large number of varieties (approximately 300) of very not well defined origin. Effectively, during several centuries of cultivation and propagation by seed, a large number of genotypes appeared and were selected, leading to the generation of an uncountable number of genotypes, different in numerous traits, particularly in those related to leaves and fruits features. Unfortunately, the extensive existing fig genetic patrimony is facing genetic erosion; for this reason, it is extremely important to study and valorised it, in order to preserve the remaining biodiversity. The purpose of this study was to genetically characterize, with nSSR markers, 79 fig accessions, collected in several areas in Italy. The set of chosen markers resulted highly polymorphic, and allowed the characterization of all the studied accessions. Data were analysed by cluster analysis, and the results demonstrated a great genetic variability within the population. The nSSR used, moreover, allowed us to identify all accessions and to recognised possible homonyms and synonyms, and cases of intravarietal clones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abou-Ellail M, Mahfouze SA, El-Enay MAM, Mustafa NSA (2014) Using biochemical and simple sequence repeats (SSR) markers to characterize (Ficus carica L.) cultivars. World Appl Sci J 29(3):313–321. https://doi.org/10.5829/idosi.wasj.2014.29.03.13835

    CAS  Google Scholar 

  • Achtak H, Oukabli A, Ater M, Santoni S, Kjellberg F, Khadari B (2009) Microsatellite markers as reliable tools for fig cultivar identification. J Am Soc Hortic Sci 134(6):624–631. https://doi.org/10.1007/s10681-010-0286-9

    Google Scholar 

  • Aradhya MK, Stover E, Velasco D, Koehmstedt A (2010) Genetic structure and differentiation in cultivated fig (Ficus carica L.). Genetica 138:681–694. https://doi.org/10.1007/s10709-010-9442-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldini E (1953) Alcuni aspetti della coltura del fico nella provincia di Firenze. Riv Ortoflorfrutt Ital 7–8:185–203

    Google Scholar 

  • Baraket G, Chatti K, Saddoud O, Abdelkarim AB, Mars M, Trifi M, Hannachi AS (2011) Comparative assessment of SSR and AFLP markers for evaluation of genetic diversity and conservation of fig, Ficus carica L., genetic resources in Tunisia. Plant Mol Biol Rep 29(1):171–184. https://doi.org/10.1007/s11105-010-0217-x

    Article  Google Scholar 

  • Barberis A, Chessa I, Nieddu G (2001) Analisi multivariata dei descrittori primari del germoplasma di fico della Sardegna. Italus Hortus 8(5):12–15

    Google Scholar 

  • Basso M (1960a) Contributo allo studio della coltura del fico nella provincia di Pisa. Riv Ortoflorfrutt Ital 3–4:1–17

    Google Scholar 

  • Basso M (1960b) Contributo allo studio della coltura del fico nella provincia di Livorno. Riv Ortoflorfrutt Ital 5–6:194–208

    Google Scholar 

  • Beghé D, Ganino T, Dall’Asta C, Silvanini A, Cirlini M, Fabbri A (2013) Identification and characterization of ancient Italian chestnut using nuclear microsatellite markers. Sci Hortic 164:50–57. https://doi.org/10.1016/j.scienta.2013.09.009

    Article  Google Scholar 

  • Brookfield JFY (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Molecular Ecology 5(3):453-455. https://doi.org/10.1046/j.1365-294X.1996.00098x

    Article  CAS  PubMed  Google Scholar 

  • Brown AHD, Weir BS (1983) Measuring genetic variability in plant populations. In: Tanksley SD, Orton PA (eds) Isozymes in plant genetics and breeding. Elsevier Science Publications, Amsterdam

    Google Scholar 

  • Buonincontri M, Moser D, Allevato E, Basile B, Di Pasquale G (2014) Farming in a rural settlement in central Italy: cultural and environmental implications of crop production through the transition from Lombard to Frankish influence (8th–11th centuries A.D.). Veg Hist Archaeobot 23:775–788. https://doi.org/10.1007/s00334-013-0429-8

    Article  Google Scholar 

  • Cabrita LF, Aksoy U, Hepaksoy S, Leitão JM (2001) Suitability of isozyme, RAPD and AFLP markers to assess genetic differences and relatedness among fig (Ficus carica L.) clones. Sci Hortic 87:261–273. https://doi.org/10.1016/S0304-4238(00)00181-3

    Article  CAS  Google Scholar 

  • Çalişkan O, Polat AA (2012) Morphological diversity among fig (Ficus carica L.) accessions sampled from the Eastern Mediterranean Region of Turkey. Turk J Agric For 36:179–193. https://doi.org/10.3906/tar-1102-33

    Google Scholar 

  • Chessa I, Erre P, Nieddu M, Satta D, Nieddu G (2001) Applicazione di marcatori molecolari RAPD in una collezione di germoplasma sardo di fico (Ficus carica L.). Italus Hortus 8(5):16–19

    Google Scholar 

  • Ciarmiello LF, Piccirillo P, Carillo P, De Luca A, Woodrow P (2015) Determination of the genetic relatedness of fig (Ficus carica L.) accessions using RAPD fingerprint and their agro-morphological characterization. S Afr J Bot 97:40–47. https://doi.org/10.1016/j.sajb.2014.11.012

    Article  CAS  Google Scholar 

  • Cipriani G, Marrazzo MT, Marconi R, Cimato A, Testolin R (2002) Microsatellite markers isolated in olive (Olea europaea L.) are suitable for individual fingerprinting and reveal polymorphism within ancient cultivars. Theor Appl Genet 104(2–3):223–228. https://doi.org/10.1007/s001220100685

    Article  CAS  PubMed  Google Scholar 

  • Condit IJ (1955) Fig varieties: a monograph. Calif Agric 23(11):323–538

    Google Scholar 

  • De Masi L, Cipollaro M, Di Bernardo G, Galderisi U, Galano G, Pavone E, Grassi G, Simeone A, Cascino A (2003) Clonal selection and molecular characterization by RAPD analysis of the fig (Ficus carica L.) “Dottato” and “Bianco del Cilento” cultivars in Italy. Acta Hortic 605:65–68

    Article  Google Scholar 

  • do Val ADB, Souza CS, Ferreira EA, Salgado SML, Pasqual M, Cançado GMA (2013) Evaluation of genetic diversity in fig accessions by using microsatellite markers. Genet Mol Res 12(2):1383–1391. https://doi.org/10.4238/2013.April.25.9

    Article  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Ercisli S, Tosun M, Karlidag H, Dzubur A, Hadziabulic S, Aliman Y (2012) Color and antioxidant characteristics of some fresh fig (Ficus carica L.) genotypes from Northeastern Turkey. Plant Foods Hum Nutr 67:271–276. https://doi.org/10.1007/s11130-012-0292-2

    Article  CAS  PubMed  Google Scholar 

  • Essid A, Aljane F, Ferchichi A, Hormaza JI (2015) Analysis of genetic diversity of Tunisian caprifig (Ficus carica L.) accessions using simple sequence repeat (SSR) markers. Hereditas 152:1. https://doi.org/10.1186/s41065-015-0002-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Falistocco E (2009) Presence of triploid cytotypes in the common fig (Ficus carica L.). Genome 52:919–925. https://doi.org/10.1139/g09-068

    Article  CAS  PubMed  Google Scholar 

  • Ferrara G, Mazzeo A, Pacucci C, Mataresse AMS, Tarantino A, Crisosto C, Incerti O, Marcotuli I, Nigro D, Blanco A, Gadaleta A (2016) Characterization of edible fig germplasm from Puglia, southeastern Italy: is the distinction of three fig types (Smyrna, San Pedro and Common) still valid? Sci Hortic 205:52–58. https://doi.org/10.1016/j.scienta.2016.04.016

    Article  Google Scholar 

  • Gaaliche B, Saddoud O, Mars M (2012) Morphological and pomological diversity of fig (Ficus carica L.) cultivars in Northwest of Tunisia. ISRN Agron 2012, Article ID 326461. https://doi.org/10.5402/2012/326461

  • Giraldo E, López-Corrales M (2008) Optimization of the management of an ex situ germplasm bank in common fig with SSRs. J Am Soc Hortic Sci 133(1):69–77

    CAS  Google Scholar 

  • Giraldo E, Viruel MA, Lòpez-Corrales M, Hormaza JI (2005) Characterisation and cross-species transferability of microsatellites in the common fig (Ficus carica L.). J Hortic Sci Biotechnol 80:217–224. https://doi.org/10.1080/14620316.2005.11511920

    Article  CAS  Google Scholar 

  • Giraldo E, López-Corrales M, Roger JP, Khadari B, Hochu I, Santoni S, Hormaza JI (2008) Standardization of experimental protocols and SSR markers for the management of fig germplasm collections. Acta Hortic (ISHS) 798:213–216. https://doi.org/10.17660/ActaHortic.2008.798.29

    Article  CAS  Google Scholar 

  • Giraldo E, López-Corrales M, Hormaza JI (2010) Selection of the most discriminating morphological qualitative variables for characterization of fig germplasm. J Am Soc Hortic Sci 135(3):240–249

    Google Scholar 

  • Grassi G (1998) Studies of Italian fig germplasm. Acta Hortic (ISHS) 480:97–102

    Article  Google Scholar 

  • Hocquigny S, Pelsy F, Dumas V, Kindt S, Heloir MC, Merdinoglu D (2004) Diversification within grapevine cultivars goes through chimeric states. Genome 47(3):579–589. https://doi.org/10.1139/g04-006

    Article  CAS  PubMed  Google Scholar 

  • Jakše J, Satovic Z, Javornik B (2004) Microsatellite variability among wild and cultivated hops (Humulus lupulus L.). Genome 47:889–899. https://doi.org/10.1139/g04-054

    Article  PubMed  Google Scholar 

  • Khadari B (2012) Ex situ management of fig (Ficus carica L.) genetic resources: towards the establishment of the Mediterranean reference collection. Acta Hortic (ISHS) 940:67–74. http://www.actahort.org/books/940/940_7.htm

  • Khadari B, Lashermes P, Kjellberg F (1995) RAPD fingerprints for identification and genetic characterization of fig (Ficus cairica L.) genotypes. J Genet Breed 49:77–86

    CAS  Google Scholar 

  • Khadari B, Hochu I, Santoni S, Kjellberg F (2001) Identification and characterisation of microsatellite loci in the common fig (Ficus carica L.) and representative species of genus Ficus. Mol Ecol Notes 1:191–193. https://doi.org/10.1046/j.1471-8278.2001.00072.x

    Article  CAS  Google Scholar 

  • Khadari B, Hochu I, Bouzid L, Roger JP, Kjellberg F (2003) The use of microsatellite markers for identification and genetic diversity evaluation of fig collection in CBNMP. Acta Hortic 605:77–86

    Article  CAS  Google Scholar 

  • Khadari B, Grout C, Santoni S, Kjellberg F (2005) Contrasted genetic diversity and differentiation among Mediterranean populations of Ficus carica L.: a study using mtDNA RFLP. Genet Resour Crop Evol 52:97–109. https://doi.org/10.1007/s10722-005-0290-4

    Article  CAS  Google Scholar 

  • Kirby LT (1990) DNA fingerprinting. An introduction. Stockton Press, New York

    Book  Google Scholar 

  • Knap T, Jakše J, Cregeen S, Javornik B, Hladnik M, Bandelj D (2016) Characterization and defining of a core set of novel microsatellite markers for use in genotyping and diversity study of Adriatic fig (Ficus carica L.) germplasm. Braz J Bot 39(4):1095–1102. https://doi.org/10.1007/s40415-016-0299-2

    Article  Google Scholar 

  • Laddomada B, Gerardi C, Mita G, Lumare D, Minonne F, Marchiori S, Fiocchetti F (2008) Molecular characterization of Apulian fig (Ficus carica L.) germplasm collection using fluorescence-based AFLP markers. Acta Hortic 798:205–212

    Article  CAS  Google Scholar 

  • Mariotti Lippi M, Bellini C, Mori Secci M, Gonnelli T (2009) Comparing seeds/fruits and pollen from a Middle Bronze age pit in Florence (Italy). J Archaeol Sci 36(5):1135–1141. https://doi.org/10.1016/j.jas.2008.12.017

    Article  Google Scholar 

  • Mariotti Lippi M, Bellini C, Mori Secci M, Gonnelli T, Pallecchi P (2015) Archaeobotany in Florence (Italy): landscape and urban development from the late Roman to the Middle Ages. Plant Biosyst 149(1):216–227. https://doi.org/10.1080/11263504.2013.822433

    Article  Google Scholar 

  • Mawa S, Husain K, Jantan I (2013). Ficus carica L. (Moraceae): phytochemistry, traditional uses and biological activities. Evid Based Complement Altern Med, Article ID 974256. https://doi.org/10.1155/2013/974256

  • Minonne F, Ippolito I, Marchiori S (2001) L’attività dell’orto botanico di Lecce nel reperimento e la propagazione delle vecchie cultivar di Ficus carica L. Italus Hortus 8(5):30–33

    Google Scholar 

  • Paetkau D, Calvert W, Stirling I, Stroberck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354. https://doi.org/10.1111/j.1365-294X.1995.tb00227.x

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulou K, Ehaliotis C, Tourna M, Kastanis P, Karydis I, Zervakis G (2002) Genetic relatedness among dioecious Ficus carica L. cultivars by random amplified polymorphic DNA analysis, and evaluation of agronomic and morphological characters. Genetica 114:183–194. https://doi.org/10.1023/A:1015126319534

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2005) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org

  • Rattighieri E, Rinaldi R, Bowes K, Mercuri AM (2013) Land use from seasonal archaeological sites: the archaeobotanical evidence of small Roman farmhouses in Cinigiano, South-Eastern Tuscany-Central Italy. Ann Bot 3:207–215. https://doi.org/10.4462/annbotrm-10267

    Google Scholar 

  • Saddoud O, Chatti K, Salhi-Hannachi A, Mars M, Rhouma A, Marrakchi M, Trifi M (2007) Genetic diversity of Tunisian figs (Ficus carica L.) as revealed by nuclear microsatellites. Hereditas 144(4):149–157. https://doi.org/10.1111/j.2007.0018-0661.01967.x

    Article  CAS  PubMed  Google Scholar 

  • Saddoud O, Baraket G, Chatti K, Trifi M (2011) Using morphological characters and simple sequence repeat (SSR) markers to characterize tunisian fig (Ficus carica L.) cultivars. Acta Biol Crac 53:7–14. https://doi.org/10.2478/v10182-011-0019-y

    Google Scholar 

  • Storey WB (1976) Fig Ficus carica (Moraceae). In: Simmonds NW (ed) Evolution of crop plants, 2nd edn. Wiley-Blackwell, London, pp 205–208

    Google Scholar 

  • Turfa JM (2012) Background on agriculture, agronomy in prehistoric Italy. In: Turfa JM (ed) Divining the etruscan world: the brontoscopic calendar and religious practice. Cambridge University Press, Cambridge, pp 152–153

    Chapter  Google Scholar 

  • UPOV (2010) Guidelines for the conduct of tests for distinctness, homogeneity and stability, fig edn. International union for the protection of new varieties of plants, Genéve

    Google Scholar 

  • Veberic R, Mikulic-Petkovsek M (2016) Phytochemical composition of common fig (Ficus carica L.) cultivars. In: Simmons MSJ, Preedy VR (eds) Nutritional composition of fruit cultivars. Elsevier, Amsterdam, pp 235–255

    Chapter  Google Scholar 

  • Wagner HW, Sefc KM (1999) Identity 1.0: freeware program for the analysis of microsatellite data. Vienna. http://www.boku.ac.at/zag/forsch/identity.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Ganino.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodolfi, M., Ganino, T., Chiancone, B. et al. Identification and characterization of Italian common figs (Ficus carica) using nuclear microsatellite markers. Genet Resour Crop Evol 65, 1337–1348 (2018). https://doi.org/10.1007/s10722-018-0617-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-018-0617-6

Keywords

Navigation