Skip to main content

Advertisement

Log in

Cacti: notes on their uses and potential for climate change mitigation

  • Notes on Neglected and Underutilized Crops
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The present review attempts to collate information on various uses of cacti and reflect on their potential to be considered as a possible commercial crop in the era of global climate change. The immense values of cacti has been discussed in view of their aesthetic, nutritional, nutraceutical and industrial uses. Cacti have the potential to mitigate the effects of climate change due to their unique morphological and physiological adaptation mechanisms. Vulnerability and conservation status of different cactus species along with the possible impact of climate change on the diversity of cacti have been discussed. The research and development areas where scarce information is available, are highlighted, so that immediate research and development efforts could be initiated for proper utilization of this important group of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acree TE, Lee CY, Butts RM, Barnasrd J (1976) Geosmin, the earthy component of table beet odor. J Agric Food Chem 24:430–431

    Article  CAS  Google Scholar 

  • Adams WWIII, Osmond CB (1988) Internal CO2 supply during photosynthesis of sun and shade grown CAM plants in relation to photo-inhibition. Plant Physiol 86:117–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alpura (2005) Summer evaluation of corn hybrids for ensiling. Department of Technical Service, Grupo Alpura, México

  • Altesor A, Ezcurra E (2003) Functional morphology andevolution of stem succulence in cacti. J Arid Environ 53:557–567

    Article  Google Scholar 

  • Anderson EF (2001) The cactus family. Timber, Portland

    Google Scholar 

  • Arellanes Y, Casas A, Arellanes-Meixueiro A, Vega E, Blancas J, Vallejo M, Torres I, Solís L, Pérez-Negrón E (2013) Influence of traditional markets and interchange on plant management in the Tehuacán Valley. J Ethnobiol Ethnomed 9:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Arizmendi MC, Espinosa de los Monteros A (1996) Avifauna de los bosques de cactáceas columnares del Valle de Tehuacán, Puebla. Acta Zoológica Mexicana 67:25–46

    Google Scholar 

  • Atalah E, Pak N (1997) Aumente el consumo de verduras, frutas y legumbres. In: Castillo C, Uauy R, Atalah E (eds) Guias de alimentaci on para la población chilena. INTA, Santiago, p 164

    Google Scholar 

  • Barcikowski W, Nobel PS (1984) Water relations of cacti during desiccation: distribution of water in tissues. Bot Gaz 145:110–115

    Article  Google Scholar 

  • Barthlott W, Hunt DR (1993) Cactaceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants, vol 2. Springer, Berlin, pp 161–197

    Google Scholar 

  • Basile F (2001) Economic aspects of cactus pear production and market. J Prof Assoc Cactus Dev 5:31–46

    Google Scholar 

  • Ben Salem H, Abidi S (2009) Recent advances on the potential use of Opuntia spp. in livestock feeding. Acta Hortic 811:317–326

    Article  CAS  Google Scholar 

  • Bernestein L (1961) Osmotic adjustment of plants to saline media. I: steady state. Am J Bot 48:909–918

    Article  Google Scholar 

  • Berry WL, Nobel PS (1985) Influence of soil and mineral stresses on cacti. J Plant Nutr 8:679–696

    Article  CAS  Google Scholar 

  • Blancas J, Casas A, Rangel-Landa S, Torres I, Pérez-Negrón E, Solís L, Moreno AI, Delgado A, Parra F, Arellanes Y, Caballero J, Cortés L, Lira R, Dávila P (2010) Plant management in the Tehuacán-Cuicatlán valley. Econ Bot 64:287–302

    Article  Google Scholar 

  • Borland AM, Griffiths H, Hartwell J, Smith JAC (2009) Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. J Exp Bot 60:2879–2896

    Article  CAS  PubMed  Google Scholar 

  • Boyle TH, Idnurm A (2001) Physiology and genetics of self-incompatibility in Echinopsis chamaecereus (Cactaceae). Sex Plant Reprod 13:323–327

    Article  CAS  Google Scholar 

  • Britton NL, Rose JN (1919–1923) The Cactaceae. Carnegie Institution, New York

  • Callen EO (1967) Analysis of the Tehuacan coprolites. In: Byers DS (ed) Prehistory of the Tehuacan valley, vol 1, environment and subsistence. University of Texas Press, Austin, pp 261–289

    Google Scholar 

  • Cano-Santana Z, Cordero C, Ezcurra E (1992) Termorregulación y eficiencia de intercepción de luz en Opuntia pilifera Weber (Cactaceae). Acta Bot Mex 19:63–72

    Google Scholar 

  • Casas A, Caballero J, Valiente-Banuet A (1999) Use, management and domestication of columnar cacti in south-central Mexico: a historical perspective. J Ethnobiol 19:71–95

    Google Scholar 

  • Castellar R, Obon JJ, Alacid M, Fernandez-Lopez JA (2003) Color properties and stability of betacyanins from Opuntia fruits. J Agric Food Chem 51:2772–2776

    Article  CAS  PubMed  Google Scholar 

  • Castro Cepero V, Eyzaguirre Pérez R, Ceroni Stuva A (2006) Survival of Melocactus peruvianus Vaupel and Haageocereus pseudomelanostele subsp. aureispinus (Rauh et Backeberg) Ostolaza, plants at Umarcata Hill. Chillon River Valley, Lima. Ecol Aplicada 5:61–66

    Google Scholar 

  • Chaplot V (2007) Water and soil resources response to rising levels of atmospheric CO2 concentration and to changes in precipitation and air temperature. J Hydrol 337:159–171

    Article  Google Scholar 

  • Chiteva R, Wairagu N (2013) Chemical and nutritional content of Opuntia ficus-indica. Afr J Biol 12(21):3309–3312

    Google Scholar 

  • Conde L (1975) Anatomical comparisons of five species of Opuntia (Cactaceae). Ann Mo Bot Gard 62:425–473

    Article  Google Scholar 

  • Cony MA, Trione SO, Guevara JC (2006) Macrophysiological responses of two forage Opuntia species to salt stress. J Prof Association Cactus Develop 8:52–62

    Google Scholar 

  • Cortes L, Domínguez I, Lebgue T, Viramontes O, Melgoza A, Pinedo C, Camarillo J (2014) Variation in the distribution of four cacti species due to climate change in Chihuahua, Mexico. Int J Environ Res Public Health. doi:10.3390/ijerph110100390

    PubMed Central  Google Scholar 

  • Cota-Sánchez JH (2004) Vivipary in the Cactaceae: its taxonomic occurrence and biological significance. Flora 199:481–490

    Article  Google Scholar 

  • Cota-Sánchez JH, Abreu DD (2007) Vivipary and offspring survival in the epiphytic cactus Epiphyllum phyllanthus (Cactaceae). J Exp Bot 58:3865–3873. doi:10.1093/jxb/erm232

    Article  PubMed  CAS  Google Scholar 

  • Cota-Sánchez JH, Reyes-Olivas A, Sánchez-Soto B (2007) Vivipary in coastal cacti: a potential reproductive strategy in halophytic environments. Am J Bot 94:1577–1581

    Article  PubMed  Google Scholar 

  • Cota-Sánchez JH, Bomfim-Patrício Márcia C (2010) Seed morphology, polyploidy and the evolutionary history of the epiphytic cactus Rhipsalis baccifera (Cactaceae). Polibotanica 29:107–129

    Google Scholar 

  • Cota-Sánchez JH, Reyes-Olivas A, Abreu DD (2011) Vivipary in the cactus family: a reply to Ortega-Baes’, et al. Evaluation of 25 species from northwestern Argentina. J Arid Environ 7:878–880

    Article  Google Scholar 

  • Cui M, Nobel PS (1994a) Water budgets and root hydraulic conductivity of opuntias shifted to low temperatures. Int J Plant Sci 155:167–172

    Article  Google Scholar 

  • Cui M, Nobel PS (1994b) Gas exchange and growth responses to elevated CO2 and light levels in the CAM species Opuntia ficus-indica. Plant, Cell Environ 17:935–944

    Article  CAS  Google Scholar 

  • Cui M, Miller PM, Nobel PS (1993) CO2 exchange and growth of the CAM plant Opuntia ficus-indica under elevated CO2 in open-top chambers. Plant Physiol 103:519–524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies SC, Dohleman FG, Long SP (2011) The global potential for Agave as a biofuel feedstock. Glob Change Biol Bioenergy 3:68–78

    Article  CAS  Google Scholar 

  • Dodd AN, Borland AM, Haslam RP, Griffiths H, Maxwell K (2002) Crassulacean acid metabolism: plastic, fantastic. J Exp Bot 53:1–12

    Article  Google Scholar 

  • Dok-Go H, Lee KH, Kim HJ, Lee EH, Lee J, Song YS, Lee YH, Jin C, Lee YS, Cho J (2003) Neuroprotective effects of antioxidative flavonoids, quercetin, (+)-dihydroquercetin and quercetin-methyl ether, isolated from Opuntia ficus-indica var. saboten. Brain Res 965(1–2):130–136

    Article  CAS  PubMed  Google Scholar 

  • Drennan PM, Nobel PS (2000) Responses of CAM species to increasing atmospheric CO2 concentrations. Plant, Cell Environ 23:767–781

    Article  CAS  Google Scholar 

  • Felger RS (1979) Ancient crops for the twenty-first century. In: Ritchie GA (ed) New agricultural crops: American association for the advancement of science symposium, vol 38. Westview Press, Boulder, pp 5–20

    Google Scholar 

  • Felker P (1995) Forage and fodder production and utilization. In: Barbera G, Inglese P, Pimienta-Barrios E (eds) Agro-ecology, cultivation and uses of cactus pear. FAO, Rome, pp 144–154

    Google Scholar 

  • Flores JL, Gutierrez-Correa M, Tengerdy RP (1994) Citric acid production by solid state fermentation of prickly pear peel with Aspergillus niger. Agro-Food Ind Hi-Tech 5:18–20

    CAS  Google Scholar 

  • Flores J, Jurado E, Jiménez-Bremont JF (2008) Breaking seed dormancy in specially protected Turbinicarpus lophophoroides and Turbinicarpus pseudopectinatus (Cactaceae). Plant Species Biol 23:43–46

    Article  Google Scholar 

  • Galati EM, Mondello MR, Giuffrida D, Dugo G, Miceli N, Pergolizzi S, Taviano MF (2003) Chemical characterization and biological effects of Sicilian Opuntia ficus-indica (L.) Mill. Fruit juice: antioxidant and antiulcerogenic activity. J Agric Food Chem 51(17):4903–4908

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Moya E, Romero-Manzanares A, Nobel PS (2011) Highlights for Agave productivity. Glob Change Biol Bioenergy 3:4–14

    Article  Google Scholar 

  • Garrett TY, Huynh CV, North GB (2010) Root contraction helps protect the “living rock” cactus from lethal high temperatures when growing in rocky soil. Am J Bot 97:1951–1960

    Article  PubMed  Google Scholar 

  • Gersani M, Graham AE, Nobel PS (1993) Growth response of individual roots of Opuntia ficus-indica to salinity. Plant, Cell Environ 16:827–834

    Article  CAS  Google Scholar 

  • Gibson AC, Nobel PS (1986) The cactus primer. Harvard University Press, Cambridge, p 286

    Book  Google Scholar 

  • Godínez-Alvarez H, Valiente-Banuet A, Rojas-Martínez A (2002) The role of seed dispersers in the population dynamics of the columnar cactus Neobuxbaumia tetetzo. Ecology 83:2617–2629

    Article  Google Scholar 

  • Goettsch B et al (2015) High proportion of cactus species threatened with extinction. Nat Plants. doi:10.1038/NPLANTS.2015.142

    Google Scholar 

  • Goldstein G, Nobel P (1991) Changes in osmotic pressure and mucilage during low-temperature acclimation of Opuntia ficus-indica. Plant Physiol 97:954–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory RA, Kuti JO, Felker P (1993) A comparison of Opuntia fruit quality and winter hardiness for use in Texas. J Arid Environ 24:37–46

    Article  Google Scholar 

  • Griffiths D (1905) Prickly pear and other cacti as a food for stock. USDA Bulletin 74, Washington

  • Guevara JC, Colomer JHS, Juárez MC, Estevez OR (2003) Opuntia ellisiana: cold hardiness, above-ground biomass production and nutritional quality in the Mendoza plain, Argentina. J PACD 5:55–64

    Google Scholar 

  • Hammer K (2001) Cactaceae. In: Hanelt P (ed) Institute of Plant Genetics and Crop Plant Research, Mansfeld’s encyclopedia of agricultural and horticultural crops, vol 1. Springer, Berlin, pp 198–222

    Google Scholar 

  • Han H, Felker P (1997) Field validation of water-use efficiency of the CAM plant Opuntia ellisiana in south Texas. J Arid Environ 36:133–148

    Article  Google Scholar 

  • Hargreaves A, Hill J, Leaver JD (2009) Effect of stage of growth on the chemical composition, nutritive value and ensilability of whole-crop barley. Anim Feed Sci Technol 152:50–61

    Article  CAS  Google Scholar 

  • Harris GA, Campbell GS (1981) Morphological and physiological characteristics of desert plants. In: Evans DD, Thames JL (eds) Water in desert ecosystems. Dowden, Hutchinson & Ross Inc, Stroudsburg, pp 59–74

    Google Scholar 

  • Hassan M, Blanc PJ, Pareilleux A, Goma G (1995) Production of cocoa butter equivalents from prickly pear juice by fermentation by an unsaturated fatty acid auxotroph of Cryptococcus curvatus grown in batch culture. Process Biochem 30:629–634

    Article  CAS  Google Scholar 

  • Henry BS (1996) Natural food colours. In: Hendry GF, Houghton JD (eds) Natural food colorants, 2nd edn. Blackie, London, pp 40–79

    Chapter  Google Scholar 

  • Hernández HM, Gómez-Hinostrosa C (2005) Cactus diversity and endemism in the Chihuahuan desert region. In: Cartron JEL, Ceballos G, Felger RS (eds) Biodiversity, ecosystems and conservation in Northern Mexico. Oxford University Press, New York, pp 264–275

    Google Scholar 

  • Hernández HM, Gómez-Hinostrosa C, Bárcenas RT (2001) Diversity, spatial arrangement, and endemism of Cactaceae in the Huizache area, a hot spot in the Chihuahuan desert. Biodivers Conserv 10:1097–1112

    Article  Google Scholar 

  • Hernández-Urbiola MI, Contreras-Padilla M, Pérez-Torrero E, Hernández-Quevedo G, Rojas-Molina JI, Cortes ME, Rodríguez-García ME (2010) Study of nutritional composition of nopal (Opuntia ficus indica cv. Redonda) at different maturity stages. Open Nutr J 4:11–16

    Article  CAS  Google Scholar 

  • Holthe PA, Szarek SR (1985) Physiologcial potential for survival of propagules of cassulacean acid metabolism species. Plant Physiol 79: 219–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howard RA, Touw M (1981) The cacti of the Lesser Antilles and the typification of the genus Opuntia Miller. Cactus Succul J 53:233–237

    Google Scholar 

  • Huang X, Li Q, Guo L, Yan Z (2008) Protection of cactus polysaccharide against H2O2- induced damage in the rat cerebral cortex and hippocampus differences in time of administration. Neural Regen Res 3(1):4–18

    Google Scholar 

  • Inglese P, Basile F, Schirra M (2002) Cactus pear fruit production. In: Nobel PS (ed) Cacti: biology and uses. University of California, Berkeley, pp 163–183

    Google Scholar 

  • IPCC (2007) Climate change, fourth assessment report. Cambridge University Press, London

    Google Scholar 

  • Jiménez-Sierra CL, Eguiarte LE (2010) Candy barrel cactus (Echinocactus platyacanthus Link and Otto: a traditional plant resource in Mexico subject to uncontrolled extraction and browsing. Econ Bot 64:99–108

    Article  Google Scholar 

  • Kausch W (1965) Beziehungen zwischen Wurzelwachstum, Transpiration und CO2-Gaswechsel bei einigen Kakteen. Planta 66:229–238

    Article  Google Scholar 

  • Kiesling R (1998) Origen, domesticación y distribucio´n de Opuntia ficus-indica. J Prof Assoc Cactus Dev 3:50

    Google Scholar 

  • Kluge M, Ting IP (1978) Crassulacean acid metabolism: an ecological analysis. Ecological studies series, vol 30. Springer, Berlin

    Google Scholar 

  • Le Houérou HN (1996) The role of cacti (Opuntia spp.) in erosion control, land reclamation, rehabilitation and agricultural development in the Mediterranean Basin. J Arid Environ 33:135–159

    Article  Google Scholar 

  • Le Houérou HN (2002) Cacti (Opuntia spp.) as a fodder crop for marginal lands in the Mediterranean Basin. Acta Hortic 581:21–46

    Article  Google Scholar 

  • Lloyd S, Reeves A (2014) Situation statement on Opuntioid Cacti (Austrocylindropuntia spp., Cylindropuntia spp. and Opuntia spp.) in Western Australia. Perth: Department of Agriculture and Food, Government of Western Australia

  • Lopez E (2000) Utilizacion de productos naturales en la clarificacion de aguas para consumo humano. Tesis de Maestrıa, Facultad de Ingenierıa Quımica, ISPJAE, Universidad de la Habana, Cuba

  • Lugui S, Tinoco-O Clara, Teresa T, Valiente-B Alfonso (2005) Does cladode inclination restrict microhabitat distribution for Opuntia puberula (Cactaceae)? Am J Bot 92:700–708

    Article  Google Scholar 

  • Luttge U, Medina E, Cram WJ, Lee HSJ, Popp M, Smith JAC (1989) Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in northern Venezuela. II Cactaceae. New Phytol 111:245–251

    Article  Google Scholar 

  • Mandujano MC, Montaña C, Rojas-Aréchiga M (2005) Breaking seed dormancy in Opuntia rastrera from Chihuahuan desert. J Arid Environ 62:15–21

    Article  Google Scholar 

  • Mangold T(2003) BBC news. http://news.bbc.co.uk/2/hi/programmes/correspondent/2947810.stm

  • Martorell C, Peters E (2005) The measurement of chronic disturbance and its effects on the threatened cactus Mammillaria pectinifera. Biol Conserv 124:197–207

    Article  Google Scholar 

  • Mc Pherson R (1992) Dietary fiber: a perspective. In: Gene AS (ed) dietary fiber in human nutrition, 2nd edn. CRC Handbook, Boca Raton, pp 7–11

    Google Scholar 

  • McConn MM, Nakata PA (2004) Oxalate reduced calcium availability in the pads of the prickly pears cactus through formation of calcium oxalate crystals. J Agric Food Chem 52:1371–1374

    Article  CAS  PubMed  Google Scholar 

  • Mercado A, Granados D (1999) La pitaya: Biología, Ecología, Fisiología sistemática, Etnobotánica. Universidad Autónoma de Chapingo, México

    Google Scholar 

  • Merrill LB, Taylor CA, Dusek R, Livingston CW (1980) Sheep losses from range with heavy prickly pear infestation. In: Ueckert DN, Huston JE (ed) Rangeland resources research. San Angelo TX, USA: Texas agricultural experiment station consolidated progress report 3665. p 91

  • Migaki GLE, Imes Hinson GD, Garner FM (1969) Cactus spines in the tongues of slaughtered cattle. J Am Vet Med Assoc 155:1489–1492

    CAS  PubMed  Google Scholar 

  • Mitchell J, Rook A (1979) Botanical dermatology. Greengrass, Vancouver

    Google Scholar 

  • Monjauze A, Le Houerou HN (1965) Le rôle des Opuntia dans l’économie agricole nord - africaine. Bulletin de l’Ecole Supérieure Agricole de Tunis 8/9:85–164

  • Muro-Pérez G, Jurado E, Flores J, Sánchez-Salas J, García-Pérez J, Estrada E (2012) Positive effects of native shrubs on three specially protected cacti species in Durango, México. Plant Species Biol 27:53–58

    Article  Google Scholar 

  • Mutke J, Barthlott W (2005) Patterns of vascular plant diversity at continental to global scales. Biol Skr 55:521–531

    Google Scholar 

  • Nerd A, Karadi A, Mizrahi J (1991) Salt tolerance of prickly pear cacti (Opuntia ficus-indica). Plant Soil 137:201–207

    Article  CAS  Google Scholar 

  • Nobel PS (1977) Water relations and photosynthesis of a barrel cactus, Ferocactus acanthodes, in the Colorado desert. Oecologia 27:117–133

    Article  Google Scholar 

  • Nobel PS (1978) Surface temperatures of cacti: influences of environmental and morphological factors. Ecology 59:986–996

    Article  Google Scholar 

  • Nobel PS (1980a) Interception of photosynthetically active radiation by cacti of different morphology. Oecologia 45:160–166

    Article  Google Scholar 

  • Nobel PS (1980b) Morphology, surface temperatures and northern limits of columnar cacti in the Sonoran desert. Ecology 61:1–7

    Article  Google Scholar 

  • Nobel PS (1983) Nutrient levels in cacti in relation to nocturnal acid metabolism and growth. Am J Bot 70:1244–1253

    Article  CAS  Google Scholar 

  • Nobel PS (1988) Environment biology of agaves and cacti. Cambridge University Press, New York, p 270

    Google Scholar 

  • Nobel SP (1995) Environment biology. In: Barbera G, Inglese P, Pimienta-Barrios E (eds) Agro-ecology, cultivation and uses of cactus pear. FAO, Rome, pp 36–48

    Google Scholar 

  • Nobel PS (1996) Response of soma North American CAM plants to freezing temperature and doubled CO2 concentrations: implications of global climate change for extending cultivation. J Arid Environ 34:187–196

    Article  Google Scholar 

  • Nobel PS (1999) Physicochemical and environmental plant physiology. 2nd ed. San Diego, CA: Academic Press

    Google Scholar 

  • Nobel PS (2001) Ecophysiology of Opuntia ficus-indica. In: Mondragon-Jacobo C, Perez-Gonzalez S (eds) Cactus as forage crop. FAO Plant production and protection paper 169, pp 13–20

  • Nobel PS, Luttge U, Heuer S, Ball E (1984) Influence of applied NaCl on crassulacean acid metabolism and ionic levels in a cactus, Cereus validus. Plant Physiol 75:799–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobel PS, Hartsock TL (1986) Short term and long term response of CAM plants to elevated CO2. Plant Physiol 82:604–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobel PS, Israel AA (1994) Cladode development, environmental responses of CO2 uptake, and productivity for Opuntia ficus-indica under elevated CO2. J Exp Bot 45:295–303

    Article  Google Scholar 

  • Nobel PS, Wang N, Balsamo RA, Loik ME, Hawke MA (1995) Low-temperature tolerance and acclimation of Opuntia spp. after injecting glucose or methylglucose. Int J Plant Sci 156:496–504

    Article  CAS  Google Scholar 

  • Nobel PS, De la Barrera E (2002) Stem water relations and net CO2 uptake for a hemiepiphytic cactus during short-term drought. Environ Exp Bot 48:129–137

    Article  Google Scholar 

  • North GB, Moore TL, Nobel PS (1995) Cladode development for Opuntia ficus-indica (Cactaceae) under current and doubled CO2 concentrations. Am J Bot 82:159–166

    Article  Google Scholar 

  • Novoa A, Le Roux JJ, Robertson MP, Wilson JRU, Richardson DM (2015) Introduced and invasive cactus species: a global review. AoB Plants 7:plu078. doi:10.1093/aobpla/plu078

    Article  PubMed Central  Google Scholar 

  • Ortega-Baes P, Aparicio M, Galíndez G (2010) Vivipary in the cactus family: an evaluation of 25 species from northwestern Argentina. J Arid Environ 74:1359–1361. doi:10.1016/j.jaridenv.2010.05.004

    Article  Google Scholar 

  • Ostolaza C (1994) Cactus y etnobota´nica. Quepo 8:79–86

    Google Scholar 

  • Osuna-Martínez U, Reyes-Esparza J, Rodríguez-Fragoso L (2014) Cactus (Opuntia ficus-indica): a review on its antioxidants properties and potential pharmacological use in chronic diseases. Nat Prod Chem Res 2:6. doi:10.4172/2329-6836.1000153

    Google Scholar 

  • Park EH, Kahng JH, Lee SH, Shin KH (2001) An anti-inflammatory principle from cactus. Fitoterapia 72(3):288–290

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Molphe-Balch E, del Santos-Díaz MS, Ramírez-Malagón R, Ochoa-Alejo N (2015) Tissue culture of ornamental cacti. Scientia Agricola. doi:10.1590/0103-9016-2015-0012

    Google Scholar 

  • Perfumi M, Tacconi R (1996) Anti-hyperglycemic effect of fresh Opuntia dillenii fruit from Tenerife (Canary Islands). Int J Pharmacogn 34(1):41–47

    Article  Google Scholar 

  • Pimienta-Barrios E, Loera-Quezada M, López-Amezcua LL (1992) Estudio anatómico comparativo en morfoespecies del subgénero Opuntia. In: Actas II Congreso Internacional de Tuna y Cochinilla, Santiago de Chile pp 30–39

  • Pimienta-Barrios E, Loera-Quezada M, López-Amezcua LL (1993) Estudio anatómico comparativo en colectas del subgénero Opuntia. Agrocienc, Ser Fitociencia 4:7–14

    Google Scholar 

  • Pinos-Rodríguez JM, Velázquez JC, González SS, Aguirre JR, García JC, Álvarez G, Jasso Y (2010) Effects of cladode age on biomass yield and nutritional value of intensively produced spineless cactus for ruminants. S Afr J Anim Sci 40(3):245–250

    Article  Google Scholar 

  • Pintado AI, Maceido AC, Teixeira G, Pais MS, Clemente A, Malcata FX (2000) Caseinolitic activity of fruit extract from Opuntia ficus-indica on bovine, caprine, and ovine sodium caseinates. Biotechnol Prog 17:643–646

    Article  CAS  Google Scholar 

  • Rai M, Singh RK, Sharma PC, Singh LK (2011) Indigenous cactus biodiversity: a viable genetic resource to fulfil multiform needs under rainfed ecosystem. Indian J Tradit Knowl 10(1):194–197

    Google Scholar 

  • Ramawat KG (2010) Desert plants. Springer, Heidelberg Dordrecht

    Book  Google Scholar 

  • Rebman JP, Pinkava DJ (2001) Opuntia cacti of North America: an overview. Fla Entomol 84(1):475–483

    Google Scholar 

  • Reddy AR, Gnanam A (2000) Photosynthetic productivity under CO2-enriched atmosphere in 21st century: review. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanism, regulation and adaptation. Taylor and Francis, London, pp 342–363

    Google Scholar 

  • Roman-Ramos R, Flores-Saenz JL, Alarcon-Aguilar FJ (1995) Anti-hyperglycemic effect of some edible plants. J Ethnopharmacol 48(1):25–32

    Article  CAS  PubMed  Google Scholar 

  • Russell CE, Felker P (1987a) The prickly pears (Opuntia spp., Cactaceae): a source of human and animal food in semiarid regions. Econom Bot 41:433–445

    Article  Google Scholar 

  • Russell CE, Felker P (1987b) Comparative cold hardiness of Opuntia spp. and cvs. grown for fruit, vegetable and fodder production. J Hort Sci 62:545–550

    Google Scholar 

  • Saag KML, Sanderson G, Moyna P, Ramos G (1975) Cactaceae mucilage composition. J Sci Food Agric 26:993–1000

    Article  Google Scholar 

  • Saenz C, Sepulveda E, Matsuhiro B (2004) Opuntia spp. mucilage’s: a functional component with industrial perspectives. J Arid Environ 57:275–290

    Article  Google Scholar 

  • Salim N, Abdelwaheb C, Rabah C, Ahcene B (2009) Chemical composition of Opuntia ficus-indica (L.) fruit. Afr J Biotechnol 8(8):1623–1624

    CAS  Google Scholar 

  • Schulte PJ, Smith JAC, Nobel PS (1989) Water storage and osmotic pressure influences on the water relations of a dicotyledonous desert succulent. Plant, Cell Environ 12:831–842

    Article  Google Scholar 

  • Serrano R (1996) Salt tolerance in plants and microorganisms: toxicity targets and defense responses. Int Rev Cytol 165:1–52

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Bajracharya R, Sitaula B (2009) Indigenous technology knowledge in Nepal: a review. Indian J Tradit Knowl 8(4):569–576

    Google Scholar 

  • Shedbalkar UU, Adki VS, Jadhav JP, Bapat VA (2010) Opuntia and other cacti: applications and biotechnological insights. Trop Plant Biol 3(3):136–150

    Article  CAS  Google Scholar 

  • Silverman FP, Young DR, Nobel PS (1988) Effects of applied NaCl on Opuntia hemifusa. Physiol Planta 72:343–348

    Article  CAS  Google Scholar 

  • Siriwardhana N, Jeon YJ (2004) Antioxidative effect of cactus pear fruit (Opuntia ficus-indica) extract on lipid peroxidation inhibition in oils and emulsion model systems. Eur Food Res Technol 219(4):369–376

    Article  CAS  Google Scholar 

  • Skillman JB, Winter K (1997) High photosynthetic capacity in a shade-tolerant crassulacean acid metabolism plant: implications for sunfleck use, nonphotochemical energy dissipation, and susceptibility to photoinhibition. Plant Physiol 113:441–450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JAC, Schulte PJ, Nobel PS (1987) Water flow and water storage in Agave deserti: osmotic implications of Crassulacean acid metabolism. Plant, Cell Environ 10:639–648

    Article  Google Scholar 

  • Sotomayor M, Arredondo-Gómez A, Sánchez-Barra F, Martínez-Méndez M (2004) The genus Turbinicarpus in San Luis Potosí. Cactus & Co. libri, Venegono

    Google Scholar 

  • Stintzing FC, Carle R (2005) Cactus stems (Opuntia spp.): a review on their chemistry, technology and uses. Mol Nutr Food Res 49:175–194

    Article  CAS  PubMed  Google Scholar 

  • Sudzuki F (1995) Anatomy and morphology. In: Barbera G, Inglese P, Pimienta Barrios E (eds), Agro-ecology, cultivation and uses of cactus pear. FAO plant production and protection paper No. 132, Roma. pp 28–35

  • Szarek SR, Ting IP (1975) Photosynthetic efficiency of CAM plants in relation to C3 and C4 plants. In: Marcelle, R (ed), Environmental and Biological Control of Photosynthesis, Dr. W. Junk, The Hague. pp 289–297

  • Teixeira G, Santana AR, Pais MS, Clemente A (2000) Enzymes of Opuntia ficus-indica (L.) Miller with potential industrial applications. Appl Biochem Biotechnol 88:299–312

    Article  CAS  Google Scholar 

  • Téllez O, Dávila P, Ayala M, Gutiérrez K, Melchor I (2007) Case studies on the effect of climate change on the flora of Mexico. Bot Gard Conserv Int 4(2):17–21

    Google Scholar 

  • Tel-Zur N, Mizrahi Y, Cisneros A, Mouyal J, Schneider B, Doyle JJ (2010) Phenotypic and genomic characterization of vine cactus collection (Cactaceae). Genet Resour Crop Evol. doi:10.1007/s10722-010-9643-8

    Google Scholar 

  • Terry M (2011) Regeneration of Lophophora williamsii (Cactaceae) following mummification of its crown by natural freezing events and some observations on multiple stem formation. Phytologia 93(3):330–340

    Google Scholar 

  • Tesoriere L, Butera D, Arpa DD, Di Gaudio F, Allegra M, Gentile C, Livrea MA (2003) Increased resistance to oxidation of betalain-enriched human low density lipoproteins. Free Radic Res 37(6):689–696

    Article  CAS  PubMed  Google Scholar 

  • Ting IP, Rayder L (1982) Regulation of C3 to CAM shifts. In: Ting IP, Gibbs M (eds) Crassulacean acid metabolism. Waverly Press, Baltimore, pp 193–207

    Google Scholar 

  • Trachtenberg S, Mayer AM (1981) A stereological analysis of the succulent tissue of Opuntia ficus indica (L.) Mill. I: development of mucilage cells. J Exp Bot 32(130):1091–1103

    Article  Google Scholar 

  • Trachtenberg S, Mayer A (1982) Quantitative autoradiography of mucilage secretion in Opuntia ficus indica (L.) Mill. Biol Cell 44:69–76

    CAS  Google Scholar 

  • Tufenkian D (1999) Ariocarpus easy to grow. Cactus Succul J 71:201–205

    Google Scholar 

  • Valiente-Banuet A, Godínez-Álvarez H (2002) Population and community ecology. In: Nobel PS (ed) Cacti: biology and uses. University of California Press, Berkeley, pp 91–108

    Google Scholar 

  • Valiente-Banuet A, Rizmendi MCA, Rojas-Martinez A, Dominguez Canseco L (1996) Ecological relationships between columnar cacti and nectar feeding bats in Mexico. J Trop Ecol 12:103–119

    Article  Google Scholar 

  • Walters M, Figueiredo E, Crouch NR, Winter PJD, Smith GF, Zimmermann HG, Mashope BK (2011) Naturalised and invasive succulents of southern Africa. Abc Taxa, Belgium

    Google Scholar 

  • Watt JM, Breyer-Brandwikj MG (1962) The medicinal and poisonous plants of southern and Eastern Africa. E & S Livingstone Ltd., London

    Google Scholar 

  • Weiss I, Raveh E, Mizrahi Y (2009) Effects of CO2 enrichment and fertilization regimes on net CO2 uptake and growth of Hylocereus undatus. J Am Soc Hort Sci 134:364–371

    Google Scholar 

  • Zavala-Hurtado JA, Díaz-Solís A (1995) Repair, growth, age and reproduction in the giant columnar cactus Cephalocereus columna-trajani (Karwinski ex Pfeiffer) Schumann (Cactaceae). J Arid Environ 31:21–31

    Article  Google Scholar 

  • Zavala-Hurtado JA, Valverde PL (2003) Habitat restriction in Mammillaria pectinifera, a threatened endemic Mexican cactus. J Veg Sci 14:891–898

    Google Scholar 

  • Zhao LY, Lan QJ, Huang ZC, Ouyang LJ, Zeng FH (2011) Antidiabetic effect of a newly identified component of Opuntia dillenii polysaccharides. Phytomedicine 18(8–9):661–668

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pragya Ranjan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, P., Ranjan, J.K., Misra, R.L. et al. Cacti: notes on their uses and potential for climate change mitigation. Genet Resour Crop Evol 63, 901–917 (2016). https://doi.org/10.1007/s10722-016-0394-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-016-0394-z

Keywords

Navigation