Skip to main content
Log in

Agro-morphological and molecular variability in Triticum boeoticum accessions from Zagros Mountains, Iran

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Genetic erosion in cultivated wheat provides a good reason for studying genetic diversity in crop wild relatives. In the present study, genetic diversity of 32 accessions belonging to T. boeoticum species collected from different parts of Iran were evaluated using 13 morphological traits as well as ten inter-simple sequence repeat primers. Statistical analysis for morphological traits showed significant differences among accessions (except number of fertile tillers and total tillers per plant). In principal component analysis, the first three PCA showed 82.65 % of the total morphological variation. Based on the morphological traits, accessions were separated into two main groups by cluster analysis. In molecular analysis, polymerase chain reactions amplified 105 DNA fragments, out of which, 95 (90.47 %) were polymorphic. From geographic perspective, the accessions sampled from western and southwestern of Iran showed the highest and lowest polymorphism, respectively. However, the maximum values of effective number of alleles (Ne), Nei’s gene diversity (He) and Shannon’s information index (I) was related to accessions collected from NW regions. Also, according to cluster analysis and PCoA plot genetic diversity was not related to geographical distribution. Overall, our results revealed a remarkable level of genetic diversity among studied Iranian T. boeoticum accessions; especially accessions collected from Kermanshah and Lorestan provinces, which can be of interest for future breeding programs. So, conservation of germplasm of these areas is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bandou H, Rodriguez-Quijano M, Carrillo J, Branlard G, Zaharieva M, Monneveux P (2009) Morphological and genetic variation in Aegilops geniculata from Algeria. Plant Syst Evol 277:85–97. doi:10.1007/s00606-008-0106-z

    Article  Google Scholar 

  • Bornet B, Branchard M (2001) Nonanchored inter simple sequence repeat (ISSR) markers: reproducible and specific tools for genome fingerprinting. Plant Mol Biol Report 19:209–215. doi:10.1007/BF02772892

    Article  CAS  Google Scholar 

  • Cheniany M, Ebrahimzadeh H, Salimi A, Niknam V (2007) Isozyme variation in some populations of wild diploid wheats in Iran. Biochem Syst Ecol 35:363–371. doi:10.1016/j.bse.2006.12.006

    Article  CAS  Google Scholar 

  • Chhuneja P, Kaur S, Garg T, Ghai M, Kaur S, Prashar M, Bains N, Goel R, Keller B, Dhaliwal H (2008) Mapping of adult plant stripe rust resistance genes in diploid A genome wheat species and their transfer to bread wheat. Theor Appl Genet 116:313–324. doi:10.1007/s00122-007-0668-0

    Article  CAS  PubMed  Google Scholar 

  • Ciaffi M, Dominici L, Lafiandra D (1998) High molecular weight glutenin subunit variation in wild and cultivated einkorn wheats (Triticum spp., Poaceae). Plant Syst Evol 209:123–137. doi:10.1007/BF00991528

    Article  CAS  Google Scholar 

  • Dvorak J, Luo M, Yang Z (1998) Genetic evidence on the origin of Triticum aestivum L., The origins of agriculture and crop domestication. In: Proceedings of the Harlan symposium. ICARDA, Aleppo, pp 235–251

  • Ebrahimi R, Zamani Z, Kashi A (2009) Genetic diversity evaluation of wild Persian shallot (Allium hirtifolium Boiss.) using morphological and RAPD markers. Sci Hortic 119:345–351. doi:10.1016/j.scienta.2008.08.032

    Article  CAS  Google Scholar 

  • Fahima T, Roder M, Grama A, Nevo E (1998) Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resistant to yellow rust. Theor Appl Genet 96:187–195. doi:10.1007/s001220050726

    Article  CAS  Google Scholar 

  • Fernandez M, Figueiras A, Benito C (2002) The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theor Appl Genet 104:845–851. doi:10.1007/s00122-001-0848-2

    Article  CAS  PubMed  Google Scholar 

  • Ghahremani-Majd H, Dashti F (2014) Genetic diversity of Persian shallot (Allium hirtifolium Boiss.) populations based on morphological traits and RAPD markers. Plant Syst Evol 300:1021–1030. doi:10.1007/s00606-013-0940-5

    Article  CAS  Google Scholar 

  • Hovhannisyan NA, Dulloo ME, Yesayan AH, Knüpffer H, Amri A (2011) Tracking of powdery mildew and leaf rust resistance genes in Triticum boeoticum and T. urartu, wild relatives of common wheat. Czech J Genet Plant 47:45–57

    Google Scholar 

  • Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bulletin de la Societe Vaudoise Sciences Naturelles 44:223–270

    Google Scholar 

  • Johns MA, Skroch PW, Nienhuis J, Hinrichsen P, Bascur G, Muñoz-Schick C (1997) Gene pool classification of common bean landraces from Chile based on RAPD and morphological data. Crop Sci 37:605–613. doi:10.2135/cropsci1997.0011183X003700020049x

    Article  Google Scholar 

  • Kilian B, Ozkan H, Deusch O, Effgen S, Brandolini A, Kohl J, Martin W, Salamini F (2007) Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol Biol Evol 24:217–227. doi:10.1093/molbev/msl151

    Article  CAS  PubMed  Google Scholar 

  • Kojima T, Nagaoka T, Noda K, Ogihara Y (1998) Genetic linkage map of ISSR and RAPD markers in Einkorn wheat in relation to that of RFLP markers. Theor Appl Genet 96:37–45. doi:10.1007/s001220050706

    Article  CAS  Google Scholar 

  • Malaki M, Naghavi MR, Alizadeh H, Potki P, Kazemi M, Pirseyedi SM, Mardi M, Tabatabaei F (2006) Study of genetic variation in wild diploid wheat (Triticum boeoticum) from Iran using AFLP markers. IJB 4:269–274

    CAS  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Miller T (1987) Systematics and evolution wheat breeding. Springer, Germany

    Google Scholar 

  • Morrison L, Damania A (1993) TriticumAegilops systematics: taking an integrative approach biodiversity and wheat improvement. Wiley, New York

    Google Scholar 

  • Morshedloo MR, Moghadam MRF, Ebadi A, Yazdani D (2015) Genetic relationships of Iranian Hypericum perforatum L. wild populations as evaluated by ISSR markers. Plant Syst Evol 301:657–665. doi:10.1007/s00606-014-1103-z

    Article  Google Scholar 

  • Mousavifard SS, Saeidi H, Rahiminejad MR, Shamsadini M (2015) Molecular analysis of diversity of diploid Triticum species in Iran using ISSR markers. Genet Resour Crop Evol 62:387–394. doi:10.1007/s10722-014-0160-z

    Article  Google Scholar 

  • Naghavi M, Maleki M, Tabatabaei S (2009) Efficiency of floristic and molecular markers to determine diversity in Iranian populations of T. boeoticum. World Acad Sci Eng Technol 3:42–44

    Google Scholar 

  • Naghavi M, Malaki M, Alizadeh H, Pirseiedi M, Mardi M (2010) An assessment of genetic diversity in wild diploid wheat Triticum boeoticum from west of Iran using RAPD, AFLP and SSR markers. J Agric Sci Technol 11:585–598

    Google Scholar 

  • Nasernakhaei F, Rahiminejad MR, Saeidi H, Tavasoli M (2013) Taxonomic identity of the Iranian diploid Triticum as evidenced by nrDNA ITS analysis. Phytotaxa 143:43–53. doi:10.11646/phytotaxa.143.1.2

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci 70:3321–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Piccolo SL, Alfonzo A, Conigliaro G, Moschetti G, Burruano S, Barone A (2012) A simple and rapid DNA extraction method from leaves of grapevine suitable for polymerase chain reaction analysis. Afr J Biotechnol 11:10305–10309. doi:10.5897/AJB11.3023

    Google Scholar 

  • Rholf F (2000) Numerical taxonomy and multivariate analysis system: version 2.10. Exeter Software, Setauket, New York

    Google Scholar 

  • Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salimi A, Ebrahimzadeh H, Taeb M (2005) Description of Iranian diploid wheat resources. Genet Resour Crop Evol 52:351–361. doi:10.1007/s10722-005-2256-y

    Article  Google Scholar 

  • SAS (2004) STAT User’s guide. v. 9.1. SAS Inst Inc., Cary

    Google Scholar 

  • Semagn K (2002) Genetic relationships among ten endod types as revealed by a combination of morphological, RAPD and AFLP markers. Hereditas 137:149–156. doi:10.1034/j.1601-5223.2002.01600.x

    Article  PubMed  Google Scholar 

  • Shannon CE, Weaver W (1949) Mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Sheikhehpour S, Bahraminejad S, Cheghamirza K (2014) Morphological and molecular genetic variations of oat genotypes grown in Kermanshah, Iran. Mol Biol Rep 41:4023–4030. doi:10.1007/s11033-014-3271-x

    Article  CAS  PubMed  Google Scholar 

  • Skovmand B, Rajaram S, Ribaut J, Hede A (2002) Wheat genetic resources. FAO Plant Production and Protection Series (FAO), Rom, Italy

  • van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agricultural University Papers

  • Sofalian O, Valizadeh M (2009) Investigation of seed storage proteins in some wild wheat progenitors using SDS-PAGE and Acid-PAGE. Not Bot Horti Agrobot 37:179–182

    CAS  Google Scholar 

  • Tabatabaei SF, Maassoumi TR (2001) Triticum boeoticum ssp. thaoudar “exists” in Iran. Cereal Res Commun 29:121–126

    Google Scholar 

  • Waines JG (1994) High temperature stress in wild wheats and spring wheats. Funct Plant Biol 21:705–715. doi:10.1071/PP9940705

    Google Scholar 

  • Wendel JF, Doyle JJ (1998) Phylogenetic incongruence: window into genome history and molecular evolution molecular systematics of plants II. Springer, Berlin

    Google Scholar 

  • Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Annu Rev Biochem 46:573–639. doi:10.1146/annurev.bi.46.070177.003041

    Article  CAS  PubMed  Google Scholar 

  • Yeh F, Yang R, Boyle T (1997) POPGENE, the user friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Center. University of Alberta, Edmonton

    Google Scholar 

  • Zhang Z, Gao J, Kong D, Wang A, Tang S, Li Y, Pang X (2015) Assessing genetic diversity in Ziziphus jujuba ‘Jinsixiaozao’ using morphological and microsatellite (SSR) markers. Biochem Syst Ecol 61:196–202. doi:10.1016/j.bse.2015.06.021

    Article  CAS  Google Scholar 

  • Zohary D, Hopf M (1973) Domestication of pulses in the old world legumes were companions of wheat and barley when agriculture began in the Near East. Science 182:887–894. doi:10.1126/science.182.4115.887

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Pour-Aboughadareh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pour-Aboughadareh, A., Mahmoudi, M., Moghaddam, M. et al. Agro-morphological and molecular variability in Triticum boeoticum accessions from Zagros Mountains, Iran. Genet Resour Crop Evol 64, 545–556 (2017). https://doi.org/10.1007/s10722-016-0381-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-016-0381-4

Keywords

Navigation