Skip to main content
Log in

Genetic diversity of Capsicum chinense accessions based on fruit morphological characterization and AFLP markers

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Capsicum chinense is one of the most cultivated and consumed chili pepper species in Brazil, and Amazon Basin is considered domestication center for the species. C. chinense is known for the impressive morphological fruit variability, which can be characterized by different shapes, colors, sizes, and pungency levels. In this study we report the characterization of 71 C. chinense accessions from different Brazilian geographic regions using fruit morphological descriptors and AFLP molecular markers. Fourteen descriptors, eight qualitative and six quantitative, were used to fruit characterization. For AFLP analysis, seven combinations of EcoRI and MseI primers were tested, and the following combinations were selected: E-ACA/M-CAC, E-ACC/M-CAA, and E-ACG/M-CAA. Morphological data were analyzed using WARD-MLM procedure, while Ward clustering and Bayesian procedure were used for molecular analysis. Variability was found in C. chinense in Brazil in terms of fruit phenotype, resulting in three clusters. Fruit shape and fruit weight characteristics were essential for distributing the accessions. Molecular data produced 302 polymorphic bands, forming two groups. It was not possible to group the accessions solely based on their origin using the fruit morphological data and molecular data. There was also no association between the morphological descriptors and AFLP markers. The lack of correlation suggests that both characterization steps are important for understanding and differentiating the C. chinense accessions. The combination of morphological and molecular analyses is suggested for the complete and detailed characterization of germplasm databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albrecht E, Zhang D, Saftner RA, Stommel JR (2012a) Genetic diversity and population structure of Capsicum baccatum genetic resources. Genet Resour Crop Evol 59:517–538

    Article  Google Scholar 

  • Albrecht E, Zhang D, Mays AD, Saftner RA, Stommel JR (2012b) Genetic diversity in Capsicum baccatum is significantly influenced by its ecogeographical distribution. BMC Genet 13:68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballina-Gómez H, Latournerie-Moreno L, Ruiz-Sánchez E, Pérez-Gutiérrez A, Rosado-Lugo G (2013) Morphological characterization of Capsicum annuum L. accessions from southern Mexico and their response to the Bemisia tabaciBegomovirus complex. Chil J Agric Res 73:329–338

    Article  Google Scholar 

  • Barbé TC, Amaral Júnior AT, Gonçalves LSA, Rodrigues R, Scapim CA (2010) Association between advanced generations in inbred lines of snap bean by the Ward-Modified Location Model. Euphytica 173:337–343

    Article  Google Scholar 

  • Barbosa GE, Agra MF, Romero MV, Scaldaferro MA, Moscone EA (2011) New endemic species of Capsicum (Solanaceae) from the Brazilian Caatinga: comparison with the re-circumscribed C. parvifolium. Syst Bot 36:768–781

    Article  Google Scholar 

  • Barboza GE, Bianchetti LB (2005) Three new species of Capsicum (Solanaceae) and a key to the wild species from Brazil. Syst Bot 30:863–871

    Article  Google Scholar 

  • Brasileiro BP, Marinho CD, Costa PMA, Moreira EFA, Peternelli LA, Barbosa MHP (2013) Genetic diversity in sugarcane varieties in Brazil based on the Ward-Modified Location Model clustering strategy. Genet Mol Res 13:1650–1660

    Article  Google Scholar 

  • Cabral PDS, Soares TCB, Gonçalves LSA, Amaral Júnior AT, Lima ABP, Rodrigues R, Matta FP (2010) Quantification of the diversity among common bean accessions using Ward-MLM strategy. Pesqui Agropecu Bras 45:1124–1132

    Article  Google Scholar 

  • Carvalho SIC, Ragassi CF, Bianchetti LB, Reifschneider FJB, Buso GSC, Faleiro FG (2014) Morphological and genetic relationships between wild and domesticated forms of peppers (Capsicum frutescens L. and C. chinense Jacquin). Genet Mol Res 13:7447–7464

    Article  CAS  PubMed  Google Scholar 

  • DeWitt D, Bosland PW (2009) The complete chile pepper book: a gardener’s guide to choosing, growing, preserving and cooking, 1st edn. Timber Press, London

    Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Evano G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  Google Scholar 

  • Ferreira ME, Grattapaglia D (1998) Introdução ao uso de marcadores moleculares em análise genética. Embrapa Cenargen, Brasília, p 220

    Google Scholar 

  • Finger FL, Lannes SD, Schuelter AR, Doege J, Comerlato AP, Gonçalves LSA, Ferreira FRA, Clovis LR, Scapim CA (2010) Genetic diversity of Capsicum chinensis (Solanaceae) accessions based on molecular markers and morphological and agronomic traits. Genet Mol Res 9:1852–1864

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves LSA, Rodrigues R, Amaral Júnior AT, Karasawa M, Sudré CP (2008) Comparison of multivariate statistical algorithms to cluster tomato heirloom accessions. Genet Mol Res 7:1289–1297

    Article  PubMed  Google Scholar 

  • Gonçalves LSA, Rodrigues R, Amaral Júnior AT, Karasawa M, Sudré CP (2009) Heirloom tomato gene bank: assessing genetic divergence based on morphological, agronomic and molecular data using Ward-modified location model. Genet Mol Res 8:364–374

    Article  PubMed  Google Scholar 

  • Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27:857–871

    Article  Google Scholar 

  • IPGRI - International Plant Genetic Resources Institute (1995) Descriptores para Capsicum (Capsicum spp.). IPGRI, Roma

    Google Scholar 

  • Lannes SD, Finger FL, Schuelter DR, Casali VWD (2007) Growth and quality of Brazilian accessions of Capsicum chinense fruits. Sci Hortic 112:266–270

    Article  Google Scholar 

  • Mingoti SA (2007) Análise de dados através de métodos de estatística multivariada: uma abordagem aplicada. UFMG, Belo Horizonte, p 297p

    Google Scholar 

  • Moses M, Umaharan P (2012) Genetic structure and phylogenetic relationships of Capsicum chinense. J Am Soc Hortic Sci 137:250–262

    Google Scholar 

  • Moses M, Umaharan P, Dayanandan S (2014) Microsatellite based analysis of the genetic structure and diversity of Capsicum chinense in the Neotropics. Genet Resour Crop Evol 61:741–755

    Article  CAS  Google Scholar 

  • Moura MCCL, Gonçalves LSA, Sudré CP, Rodrigues R, Amaral Júnior AT, Pereira TNS (2010) Algoritmo de Gower na estimativa da divergência genética em germoplasma de pimenta. Hortic Bras 28:155–161

    Article  Google Scholar 

  • Nicolai M, Cantet M, Lefebvre V, Sage-Palloix AM, Palloix A (2013) Genotyping a large collection of pepper (Capsicum spp.) with SSR loci brings new evidence for the wild origin of cultivated C. annuum and the structuring of genetic diversity by human selection of cultivar types. Genet Resour Crop Evol 60:2375–2390

    Article  Google Scholar 

  • Ortiz R, Crossa J, Franco J, Sevilla R, Burgueño J (2008) Classification of Peruvian highland maize races using plant traits. Genet Resour Crop Ev 55:151–162

    Article  Google Scholar 

  • Pickersgill B (1971) Relationships between weedy and cultivated forms in some species of chili peppers (genus Capsicum). Evolution 25:683–691

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly PJ (2000) Inference of population Structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schreinemachers P, Ebert AW, Wu MH (2014) Costing the ex situ conservation of plant genetic resources at AVRDC—The World Vegetable Center. Genet Resour Crop Evol 61:757–773

    Article  Google Scholar 

  • Sudré CP, Gonçalves LSA, Rodrigues R, do Amaral Júnior AT, Riva-Souza EM, Bento CS (2010) Genetic variability in domesticated Capsicum spp as assessed by morphological and agronomic data in mixed statistical analysis. Genet Mol Res 9:283–294

    Article  PubMed  Google Scholar 

  • Teodoro AFP, Alves RBN, Ribeiro LB, Reis K, Reifschneider FJB, Fonseca MEN, Silva JP, Agostini-Costa T (2013) Vitamin C content in Habanero pepper accessions (Capsicum chinense). Hortic Bras 31:59–62

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, de Lee TV, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 21:4407–4414

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro Simões Azeredo Gonçalves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baba, V.Y., Rocha, K.R., Gomes, G.P. et al. Genetic diversity of Capsicum chinense accessions based on fruit morphological characterization and AFLP markers. Genet Resour Crop Evol 63, 1371–1381 (2016). https://doi.org/10.1007/s10722-015-0325-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-015-0325-4

Keywords

Navigation