Skip to main content

Advertisement

Log in

Multiple trends in interspecific crop diversity: a longitudinal case study from the Ecuadorian Andes

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

This case study reports on recent developments in the extent of interspecific crop diversity in Cotacachi located in the Northern Ecuadorian Andes. Like in many other regions, trends of genetic erosion led to simplified fields with reduced levels of crop diversity in this area during the twentieth century. The present study examines whether, at the crop level, this reduction continued after the millennium shift. The problem is approached through a longitudinal comparison of crop richness on surveyed farms in 2003 and 2009. The results display multiple trends; while a few field crops remained stable in terms of their presence among farms, some increased and others decreased their role. Simultaneously, there was a marked increase in the planting of vegetables and fruits in home gardens. On a general level, these varied trends resulted in a significant rise in farms’ average crop richness amounting to five more crops, as well as an overall 42 % increase in the frequency with which any crop was planted among the farms. The observed trends are discussed in the light of local sociocultural, economic and agroclimatic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Even if this most often is the case, there is not always a one to one correspondence between the taxonomic units of crops and crop species. I will in this paper focus on crops as the unit of analysis, thus considering different cultivated potato species as one crop unit (potatoes) and different cabbage crops belonging to the same species Brassica oleracea as distinct units. I still use the term “interspecific” diversity to denote this kind of diversity at the crop level, because of its wider use in the literature, the approximate correspondence between crops and crop species, and the already established meaning of the alternative and more precise term “intercrop” as a particular type of cultivation system.

  2. A cantón is an Ecuadorian geographical-administrative unit, roughly corresponding to the size of a United States county. The country is divided into 24 provincias, that altogether encompass 224 cantones.

  3. Based on data series 1980–2010 provided to the author by Instituto Nacional de Meteorología e Hidrología.

  4. During recent years, however, this general pattern has begun to be modified, as climatic changes have prompted farmers to expand maize cultivation to the upper agricultural zone (Skarbø and VanderMolen 2015).

  5. While analysis of households’ changes over time in diversity in relation to variation in household level characteristics might yield interesting insights, the present study’s sample size limits the applicability of this approach. For a detailed cross-sectional analysis of how household level factors relate to crop diversity measures in a larger farm sample in the same study area, please refer to Skarbø (2014).

  6. For names in Kichwa, Spanish and Latin of the crops mentioned in the text of the article, please refer to Tables 5, 6 and 7.

  7. Grano is a term frequently used for traditional, locally grown field crops in Cotacachi.

References

  • Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31. doi:10.1016/S0167-8809(99)00028-6

    Article  Google Scholar 

  • Barry MB, Pham JL, Béavogui S, Ghesquière A, Ahmadi N (2007) Diachronic (1979–2003) analysis of rice genetic diversity in Guinea did not reveal genetic erosion. Genet Resour Crop Evol 55:723–733. doi:10.1007/s10722-007-9280-z

    Article  Google Scholar 

  • Baur E (1914) Die Bedeutung der primitiven Kulturrassen und der wilden Verwandten unserer Kulturpflanzen für die Pflanzenzüchtung. Jahrbuch der Deutschen Landwirtschafts-gesellschaft 29:104–109

    Google Scholar 

  • Becker M (2008) Indians and leftists in the making of Ecuador’s modern indigenous movements. Duke University Press, Durham

    Book  Google Scholar 

  • Bezançon G et al (2009) Changes in the diversity and geographic distribution of cultivated millet (Pennisetum glaucum (L.) R. Br.) and sorghum (Sorghum bicolor (L.) Moench) varieties in Niger between 1976 and 2003. Genet Resour Crop Evol 56:223–236. doi:10.1007/s10722-008-9357-3

    Article  Google Scholar 

  • Brooker RW et al (2015) Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytol 206:107–117. doi:10.1111/nph.13132

    Article  PubMed  Google Scholar 

  • Brush SB (1999) Genetic erosion of crop populations in centers of crop diversity: a revision. In: Serwinski J, Faberová I (eds) Proceedings of the technical meeting on the methodology of the FAO World Information and Early Warning System on Plant Genetic Resources, June 22–23. Food and Agriculture Organization of the United Nations, Prague, Czech Republic, pp 34–44

  • Brush SB, Taylor JE, Bellon MR (1992) Technology adoption and biological diversity in Andean potato agriculture. J Dev Econ 39:365–387

    Article  Google Scholar 

  • Brush SB, Bellon MR, Hijmans RJ, Orozco Ramirez Q, Perales HR, van Etten J (2015) Assessing maize genetic erosion. Proc Natl Acad Sci USA 112:E1. doi:10.1073/pnas.1422010112

    Article  CAS  PubMed  Google Scholar 

  • Chambers KJ, Brush SB, Grote MN, Gepts P (2007) Describing maize (Zea mays L.) landrace persistence in the Bajío of Mexico: a survey of 1940s and 1950s collection locations. Econ Bot 61:60–72. doi:10.1663/0013-0001(2007)61[60:DMZMLL]2.0.CO;2

    Article  Google Scholar 

  • Crosby AW (1972) The Columbian exchange: biological and cultural consequences of 1492. Contributions in American studies, No 2. Greenwood Pub. Co., Westport, CT

  • Dangles O, Carpio C, Barargan AR, Zeddam J-L, Silvain J-F (2008) Temperature as a key driver of ecological sorting among invasive pest species in the tropical Andes. Ecol Appl 18:1795–1809

    Article  CAS  PubMed  Google Scholar 

  • Dansi A et al (2013) Varietal diversity and genetic erosion of cultivated yams (Dioscorea cayenensis Poir., D. rotundata Lam. complex and D. alata L.) in Togo. Int J Biodivers Conserv 5:223–239

    Google Scholar 

  • Deu M et al (2010) Spatio-temporal dynamics of genetic diversity in Sorghum bicolor in Niger. Theor Appl Genet 120:1301–1313. doi:10.1007/s00122-009-1257-1

    Article  PubMed  Google Scholar 

  • Durkalski VL, Palesch YY, Lipsitz SR, Rust PF (2003) Analysis of clustered matched-pair data. Stat Med 22:2417–2428. doi:10.1002/sim.1438

    Article  PubMed  Google Scholar 

  • Dyer GA, Lopez-Feldman A, Yunez-Naude A, Taylor JE (2014) Genetic erosion in maize's center of origin. Proc Natl Acad Sci USA. doi:10.1073/pnas.1407033111

    Google Scholar 

  • Easterling WE et al (2007) Food, fibre and forest products. Climate Change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Parry M, Canziani O, Palutikof J, van der Linden P, Hanson C (eds) Cambridge University Press, Cambridge, pp 273–213

  • Eyshi Rezaei E, Gaiser T, Siebert S, Ewert F (2013) Adaptation of crop production to climate change by crop substitution. Mitig Adapt Strateg Glob Change. doi:10.1007/s11027-013-9528-1

    Google Scholar 

  • FAO (1997) The state of the world’s plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2010) The second report on the state of the World’s Plant Genetic Resources for Food and Agriculture. Commision on Genetic Resources for Food and Agriculture, Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Fowler C, Mooney PR (1990) Shattering: food, politics, and the loss of genetic diversity. University of Arizona Press, Tucson

    Google Scholar 

  • Frankel OH (1970) The genetic dangers of the Green Revolution. World Agr 19:9–13

    Google Scholar 

  • Guarino L (1999) Approaches to measuring genetic erosion. In: Serwinski J, Faberová I (eds) Proceedings of the technical meeting on the methodology of the FAO World Information and Early Warning System on Plant Genetic Resources. Research Institute of Crop Production and Food and Agriculture Organization of the United Nations, Prague and Rome, pp 26–28

  • Halweil B (2004) Eat here: reclaiming homegrown pleasures in a global supermarket, 1st edn. W.W. Norton, New York

    Google Scholar 

  • Hammer K, Khoshbakht K (2005) Towards a ‘red list’ for crop plant species. Genet Resour Crop Evol 52:249–265

    Article  Google Scholar 

  • Hammer K, Knüpffer H, Xhuveli L, Perrino P (1996) Estimating genetic erosion in landraces—two case studies. Genet Resour Crop Evol 43:329–336

    Article  Google Scholar 

  • Harlan JR (1975) Our vanishing genetic resources. Science 188:618–621

    Article  Google Scholar 

  • Harlan HV, Martini ML (1936) Problems and results in barley breeding. In: USDA Yearbook of Agriculture. US Gov. Print. Office, Washington, DC, pp 303–346

  • Hernández Bermejo JE, León J (1994) Neglected crops: 1492 from a different perspective. FAO plant production and protection series, vol 26. Food and Agriculture Organization of the United Nations, Rome

  • Izquierdo J, Roca W (1998) Under-utilized Andean crops: status and prospects of plant biotechnology for the conservation and sustainable agriculture use of genetic resources. In: Scannerini S, Baker A, Charlwood BV, Damiano C, Franz C (eds) ISHS Acta Horticulturae 457: symposium on plant biotechnology as a tool for the exploitation of mountain lands. Fondazione per le Biotechnologie, Torino

  • Khoury CK et al (2014) Increasing homogeneity in global food supplies and the implications for food security. Proc Natl Acad Sci USA 111:4001–4006. doi:10.1073/pnas.1313490111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura A, Nishiyama M (2007) The chisan-chisho movement: Japanese local food movement and its challenges. Agric Hum Values 25:49–64. doi:10.1007/s10460-007-9077-x

    Article  Google Scholar 

  • Lin BB (2011) Resilience in agriculture through crop diversification: adaptive management for environmental change. BioScience 61:183–193. doi:10.1525/bio.2011.61.3.4

    Article  Google Scholar 

  • Lyons BJ (2006) Remembering the hacienda: religion, authority, and social change in highland Ecuador. In: Joe R, Lozano T (eds) Long series in Latin American and Latino art and culture, 1st edn. University of Texas Press, Austin

    Google Scholar 

  • Martínez-Castillo J, Camacho-Pérez L, Coello-Coello J, Andueza-Noh R (2012) Wholesale replacement of lima bean (Phaseolus lunatus L.) landraces over the last 30 years in northeastern Campeche, Mexico. Genet Resour Crop Evol 59:191–204. doi:10.1007/s10722-011-9675-8

    Article  Google Scholar 

  • Moates S, Campbell BC (2006) Incursion, fragmentation and tradition: historical ecology in Andean Cotacachi. In: Rhoades RE (ed) Development with identity: community, culture, and sustainability in the Andes. CABI Publishing, Wallingford

    Google Scholar 

  • Nabhan GP (2002) Coming home to eat: the pleasures and politics of local foods, 1st edn. Norton, New York

    Google Scholar 

  • Nabhan GP (2007) Agrobiodiversity change in a Saharan Desert oasis, 1919–2006: historic shifts in Tasiwit (Berber) and Bedouin crop inventories of Siwa, Egypt. Econ Bot 61:31–43

    Article  Google Scholar 

  • Nabhan GP, Garcia J, Routson R, Routson K, Cariño-Olivera M (2010) Desert oases as genetic refugia of heritage crops: persistence of forgotten fruits in the mission orchards of Baja California, Mexico. Int J Biodivers Conserv 2:56–69

    Google Scholar 

  • National Research Council (1989) Lost crops of the Incas: little-known plants of the Andes with promise for worldwide cultivation. National Academy Press, Washington

    Google Scholar 

  • Naylor RL, Falcon WP, Goodman RM, Jahn MM, Sengooba T, Tefera H, Nelson RJ (2004) Biotechnology in the developing world: a case for increased investments in orphan crops. Food Policy 29:15–44. doi:10.1016/j.foodpol.2004.01.002

    Article  Google Scholar 

  • Nazarea VD (1998) Cultural memory and biodiversity. University of Arizona Press, Tucson

    Google Scholar 

  • Nazarea VD (2006) Local knowledge and memory in biodiversity conservation. Annu Rev Anthrop 35:317–335. doi:10.1146/annurev.anthro.35.081705.123252

    Article  Google Scholar 

  • Nazarea VD, Piniero M, Rhoades RE, Alarcón R, Camacho J (2003a) Costumbres del ayer, tesoros del mañana: plantas de herencia, conocimientos ancestrales y bancos de memoria. Abya Yala Press, Quito

    Google Scholar 

  • Nazarea VD, Piniero M, Rhoades RE, Alarcón R, Camacho J (2003b) Recolección de plantas y conocimientos ancestrales: un programa de conocimientos y capacitación. Abya Yala Press, Quito

    Google Scholar 

  • Nazarea VD, Camacho J, Parra N (2006) Recipes for life: counsel, customs, and cuisine from the Andean hearths. Abya Yala, Quito

    Google Scholar 

  • Orlove B (1998) Down to earth: race and substance in the Andes. Bull Latin Amer Res 17:207–222

    Article  Google Scholar 

  • Ortiz Crespo S (2004) Cotacachi: una apuesta por la democracia participativa. FLACSO Sede Ecuatoriana, Quito

    Google Scholar 

  • Padulosi S, Thompson J, Rudebjer P (2013) Fighting poverty, hunger and malnutrition with neglected and underutilized species (NUS): needs, challenges and the way forward. Bioversity International, Rome

    Google Scholar 

  • Padulosi S, Amaya K, Jäger M, Gotor E, Rojas W, Valdivia R (2014) A holistic approach to enhance the use of neglected and underutilized species: the case of Andean grains in Bolivia and Peru. Sustainability 6:1283–1312. doi:10.3390/su6031283

    Article  Google Scholar 

  • Pearsall D (2008) Plant domestication and the shift to agriculture in the Andes. In: Silverman H, Isbell WH (eds) Handbook of South American Archaeology. Springer, New York, pp 105–120

    Chapter  Google Scholar 

  • Perreault T (2005) Why Chakras (swidden gardens) persist: agrobiodiversity, food security, and cultural identity in the Ecuadorian Amazon. Hum Org 64:327–339

    Article  Google Scholar 

  • Ramirez M, Williams D (2003) Guía agro-culinaria de Cotacachi. IPGRI-Américas, Cali

    Google Scholar 

  • Rhoades RE (2006) Development with identity: community, culture and sustainability in the Andes. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Rhoades RE, Zapata Ríos X, Aragundy J (2006) Climate change in Cotacachi. In: Rhoades RE (ed) Development with identity: community, culture and sustainability in the Andes. CABI Publishing, Wallingford, pp 64–74

    Chapter  Google Scholar 

  • Rogers M (1998) Spectacular bodies: folklorization and the politics of identity in Ecuadorian beauty pageants. J Lat Am Anthropol 3:54–85. doi:10.1525/jlat.1998.3.2.54

    Article  Google Scholar 

  • Rosset P (2008) Food sovereignty and the contemporary food crisis. Development 51:460–463

    Article  Google Scholar 

  • Shewayrga H, Jordan DR, Godwin IR (2008) Genetic erosion and changes in distribution of sorghum (Sorghum bicolor L. (Moench)) landraces in north-eastern Ethiopia. Plant Genet Resour 6:1–10

    Article  Google Scholar 

  • Skarbø K (2006) Living, dwindling, loosing, finding: status and changes in agrobiodiversity of Cotacachi. In: Rhoades RE (ed) Development with identity: community, culture and sustainability in the Andes. CABI Publishing, Wallingford, pp 123–139

    Chapter  Google Scholar 

  • Skarbø K (2012) Reconfiguration of Andean fields: culture, climate and agrobiodiversity. Ph.D. dissertation, Department of Anthropology, University of Georgia

  • Skarbø K (2014) The cooked is the kept: factors shaping the maintenance of agro-biodiversity in the Andes. Hum Ecol 41:711–726. doi:10.1007/s10745-014-9685-1

    Article  Google Scholar 

  • Skarbø K (2015) From lost crop to lucrative commodity: conservation implications of the quinoa renaissance. Hum Org 74:86–99

    Article  Google Scholar 

  • Skarbø K, VanderMolen K (2014) Irrigation access and vulnerability to climate-induced hydrological change in the Ecuadorian Andes. Cult Agric Food Environ 36:28–44. doi:10.1111/cuag.12027

    Article  Google Scholar 

  • Skarbø K, VanderMolen K (2015) Maize migration: key crop expands to higher altitudes under climate change in the Andes. Clim Dev. doi:10.1080/17565529.2015.1034234

    Google Scholar 

  • Skarbø K, VanderMolen K, Ramos R, Rhoades RE (2012) ‘The one who has changed is the person’: observations and explanations of climate change in the Ecuadorian Andes. In: Castro AP, Taylor D, Brokensha D (eds) Climate change and threatened communities: vulnerability, capacity and action. Practical Action Publishing, Rugby, pp 119–128

    Chapter  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. W.H. Freeman and Company, New York

    Google Scholar 

  • Teddlie C, Yu F (2007) Mixed methods sampling: a typology with examples. J Mix Methods Res 1:77–100. doi:10.1177/2345678906292430

    Article  Google Scholar 

  • Teklu Y, Hammer K (2006) Farmers’ perception and genetic erosion of tetraploid wheats landraces in Ethiopia. Genet Resour Crop Evol 53:1099–1113

    Article  Google Scholar 

  • Thomas M et al (2012) On-farm dynamic management of genetic diversity: the impact of seed diffusions and seed saving practices on a population-variety of bread wheat. Evol Appl 5:779–795. doi:10.1111/j.1752-4571.2012.00257.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsegaye B, Berg T (2007) Genetic erosion of Ethiopian tetraploid wheat landraces in Eastern Shewa, Central Ethiopia. Genet Resour Crop Evol 54:715–726

    Article  Google Scholar 

  • Ucodep (2010) Programa Cultivos Olvidados y/o Subutilizados (NUS). Unidad y Cooperación para el Desarrollo de los Pueblos, Arezzo, Italy

  • UNORCAC (2007a) Informativo Institucional No. 1. Unión de Organizaciones Campesinas e Indígenas de Cotacachi, Cotacachi, Ecuador

  • UNORCAC (2007b) UNORCAC en cifras. Union de Organizaciones Campesinas e Indígenas de Cotacachi, Cotacachi, Ecuador

  • UNORCAC (2008) Informativo Institucional No. 2. Unión de Organizaciones Campesinas e Indígenas de Cotacachi, Cotacachi, Ecuador

  • van de Wouw M, Kik C, van Hintum T, van Treuren R, Visser B (2009) Genetic erosion in crops: concept, research results and challenges. Plant Genet Resour 8:1. doi:10.1017/s1479262109990062

    Article  Google Scholar 

  • van Heerwaarden J, Hellin J, Visser RF, van Eeuwijk FA (2009) Estimating maize genetic erosion in modernized smallholder agriculture. Theor Appl Genet 119:875–888. doi:10.1007/s00122-009-1096-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandermeer J (1989) The ecology of intercropping. University of Cambridge Press, Cambridge

    Book  Google Scholar 

  • Vandermeer J, van Noordwijk M, Anderson J, Ong C, Perfecto I (1998) Global change and multi-species agroecosystems: concepts and issues. Agric Ecosyst Environ 67:1–22. doi:10.1016/S0167-8809(97)00150-3

    Article  Google Scholar 

  • Vavilov NI, Dorofeev VF (1992) Origin and geography of cultivated plants, English edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Veteto JR (2010) Seeds of persistence: agrobiodiversity, culture, and conservation in the American Mountain South. Ph.D. dissertation, University of Georgia

  • Viatori M (2007) Zápara leaders and identity construction in Ecuador: the complexities of indigenous self-representation. J Lat Am Caribb Anthropol 12:104–133. doi:10.1525/jlca.2007.12.1.104

  • Weismantel MJ (1988) Food, gender, and poverty in the Ecuadorian Andes. University of Pennsylvania Press, Philadelphia

    Google Scholar 

  • Westengen OT et al (2014) Ethnolinguistic structuring of sorghum genetic diversity in Africa and the role of local seed systems. Proc Natl Acad Sci USA 111:14100–14105. doi:10.1073/pnas.1401646111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wibbelsman M (2009) Ritual encounters: Otavalan modern and mythic community. Interpretations of culture in the new millennium. University of Illinois Press, Urbana

    Google Scholar 

  • Wilkins J (2005) Eating right here: moving from consumer to food citizen. Agric Hum Values 22:269–273

    Article  Google Scholar 

  • Williams D, Ramirez M (2008) Ecuadorian women play a central role in conserving native crops. Geneflow 2008:40–41

    Google Scholar 

  • Zapata Ríos X, Rhoades RE, Segovia MC, Zehetner F (2006) Four decades of land use change in the Cotacachi Andes: 1963–2000. In: Rhoades RE (ed) Development with identity: community, culture and sustainability in the Andes. CABI Publishing, Wallingford, pp 46–63

    Chapter  Google Scholar 

  • Zehetner F, Miller WP (2006) Shaping an Andean landscape: processes affecting topography, soils and hydrology in Cotacachi. In: Rhoades RE (ed) Development with identity: community, culture and sustainability in the Andes. CABI Publishing, Wallingford, pp 21–26

    Chapter  Google Scholar 

  • Zimmerer KS (1996) Changing fortunes: biodiversity and peasant livelihood in the Peruvian Andes. California studies in critical human geography, vol 1. University of California Press, Berkeley

    Google Scholar 

Download references

Acknowledgments

I thank the many farmers in Cotacachi generously sharing their time and experiences during the research. I am also grateful for research assistance from Rosa Ramos, and institutional support from the Unión de organizaciones campesinas e indígenas de Cotacachi, the University of Georgia, and the Norwegian University of Life Sciences. In particular I thank Cary Fowler, Virginia D. Nazarea, and Bram Tucker for research guidance and input, and Ola Westengen, Trygve Berg, and two anonymous reviewers for comments on earlier drafts. This work was supported financially by the Norwegian University of Life Sciences, an Andrew E. and G. Norman Wigeland Fellowship Fellowship from the American-Scandinavian Association, and the National Science Foundation under Grant No. 0921859. All errors remain those of the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristine Skarbø.

Ethics declarations

Conflict of interests

The author declares having no conflict of interest.

Ethical Approval

The research was carried out in compliance with the principles of ethical conduct in the Code of Ethics of the International Society of Ethnobiology (http://ethnobiology.net/code-of-ethics/). To ensure compliance with local ethical standards, project aims, design and implementation was discussed and agreed upon with relevant local authorities, including community leaders and leadership in the municipal administration of Cotacachi cantón and the Unión de Organizaciones Campesinas e Indígenas de Cotacachi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skarbø, K. Multiple trends in interspecific crop diversity: a longitudinal case study from the Ecuadorian Andes. Genet Resour Crop Evol 63, 1319–1343 (2016). https://doi.org/10.1007/s10722-015-0320-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-015-0320-9

Keywords

Navigation