Genetic Resources and Crop Evolution

, Volume 60, Issue 7, pp 1923–1943 | Cite as

Horseradish (Armoracia rusticana), a neglected medical and condiment species with a relevant glucosinolate profile: a review

  • Rosa Agneta
  • Christian Möllers
  • Anna Rita Rivelli
Review paper


Armoracia rusticana (horseradish), a member of the Brassicaceae family, has been known since ancient times as a folk medicinal herb and as a plant of nutritional value and culinary interest. Currently horseradish is cultivated for its thick, fleshy and white roots which have a delicious intense pungency and for its tender leaves which are frequently used for salad mixed to other vegetables. The traditions to use horseradish plant for medicinal purpose are still applied in many countries. Horseradish is a rich source of a number of bioactive compounds such as glucosinolates (GLSs) and their breakdown products. Sinigrin is the dominant glucosinolate in both leaves and roots. Recent studies have shown that crude plant extracts have a complex profile of naturally occurring GLSs, with particular regard to sprouts. The increasing interest in these secondary metabolites, associated to the long and diffuse tradition of using horseradish in food preservation and as condiment in many parts of the world, is generating new applications of this plant in several agro-industrial and pharmaceutical sectors and is encouraging the use of its roots and leaves in functional food and medicine for human health. A bibliography review is discussed on ethnobotanical aspects and uses of this plant, as well as knowledge about its flavour compounds and GLS content and composition. This study summarizes also the updated information concerning the influence of the genotype and environment on GLS profile in horseradish.


Brassicaceae Ethnobotany Ethnopharmacognosy Glucosinolates Horseradish Isothiocyanates 



The authors are grateful to Mr. Vito Agneta for assistance in graphic design images and Prof. Ippolito Camele of the University of Basilicata for providing the images in Fig. 2. The authors are also thankful to the Editors of Economic Botany, Phytochemistry and Journal of Agricultural and Food Chemistry for: (1) the use of the Table 1; (2) the adapt of the Table 2—Copyright (1980) Elsevier Ltd and Table 3—Copyright (1979) Elsevier Ireland Ltd; (3) the permission to adapted Tables 4 and 5—Copyright (2004) American Chemical Society, respectively.


  1. Agneta R, Rivelli AR, Ventrella E, Lelario F, Sarli G, Bufo SA (2012) Investigation of glucosinolate profile and qualitative aspects in sprouts and roots of horseradish (Armoracia rusticana) using LC-ESI − hybrid linear ion trap with Fourier transform ion cyclotron resonance mass spectrometry and infrared multiphoton dissociation. J Agric Food Chem 60(30):7474–7482. doi: 10.1021/jf301294h CrossRefGoogle Scholar
  2. Aires A, Rosa E, Carvalho R (2006) Effect of nitrogen and sulfur fertilization on glucosinolates in the leaves and roots of broccoli sprouts (Brassica oleracea var. italica). J Sci Food Agric 86(10):1512–1516. doi: 10.1002/jsfa.2535 CrossRefGoogle Scholar
  3. Alnsour M, Kleinwächter M, Böhme J, Selmar D (2012) Sulfate determines the glucosinolate concentration of horseradish in vitro plants (Armoracia rusticana Gaertn., Mey. & Scherb.). J Sci Food Agric. doi: 10.1002/jsfa.5825
  4. Al-Shehbaz IA (1988) The genera of Arabideae (Cruciferae; Brassicaceae) in the Southeastern United States. J Arnold Arbor 69:85–166Google Scholar
  5. Al-Shehbaz IA, Beilstein MA, Kellogg EA (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst Evol 259(2–4):89–120. doi: 10.1007/s00606-006-0415-z CrossRefGoogle Scholar
  6. Anjum NA, Gill SS, Umar S, Ahmad I, Duarte AC, Pereira E (2012) Improving growth and productivity of oleiferous brassicas under changing environment: significance of nitrogen and sulphur nutrition, and underlying mechanisms. Sci World J. doi: 10.1100/2012/657808
  7. Balasinska B, Nicolle C, Gueux E, Majewska A, Demigne C, Mazur A (2005) Dietary horseradish reduces plasma cholesterol in mice. Nutr Res 25(10):937–945. doi: 10.1016/j.nutres.2005.09.015 CrossRefGoogle Scholar
  8. Bellostas N, Sørensen AD, Sørensen JC, Sørensen H (2007a) Genetic variation and metabolism of glucosinolates. Adv Bot Res 45:369–415. doi: 10.1016/S0065-2296(07)45013-3 CrossRefGoogle Scholar
  9. Bellostas N, Kachlicki P, Sørensen JC, Sørensen H (2007b) Glucosinolate profiling of seeds and sprouts of B. oleracea varieties used for food. Sci Hortic 114(4):234–242. doi: 10.1016/j.scienta.2007.06.015 CrossRefGoogle Scholar
  10. Blazevic I, Mastelic J (2009) Glucosinolate degradation products and other bound and free volatiles in the leaves and roots of radish (Raphanus sativus L.). Food Chem 113:96–102. doi: 10.1016/j.foodchem.2008.07.029 CrossRefGoogle Scholar
  11. Bones AM, Rossiter JT (2006) The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry 67(11):1053–1067. doi: 10.1016/j.phytochem.2006.02.024 PubMedCrossRefGoogle Scholar
  12. Borgen BH, Thangstad OP, Ahuja I, Rossiter JT, Bones AM (2010) Removing the mustard oil bomb from seeds: transgenic ablation of myrosin cells in oilseed rape (Brassica napus) produces MINELESS seeds. J Exp Bot 61(6):1683–1697. doi: 10.1093/jxb/erq039 PubMedCrossRefGoogle Scholar
  13. Bostock J, Riley HT (1856) The natural history of Pliny, vol IV. H.G. Bohn, LondonGoogle Scholar
  14. Bratsch A (2009) Specialty crop profile: horseradish. Virginia cooperative extension.
  15. Brown AF, Yousef GG, Jeffery EH, Klein BP, Wallig MA, Kushad MM, Juvik JA (2002) Glucosinolate profiles in broccoli: variation in levels and implications in breeding for cancer chemoprotection. J Am Soc Hortic Sci 127(5):807–813Google Scholar
  16. Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62:471–481. doi: 10.1016/S0031-9422(02)00549-6 PubMedCrossRefGoogle Scholar
  17. Cataldi TRI, Rubino A, Lelario F, Bufo SA (2007) Naturally occurring glucosinolates in plant extracts of Rocket Salad (Eruca sativa L.) identified by liquid chromatography coupled with negative ion electrospray ionization and quadrupole ion-trap mass spectrometry. Rapid Commun Mass Spectrom 21(14):2374–2388PubMedCrossRefGoogle Scholar
  18. Chen H, Akinkurolere RO, Zhang H (2011) Fumigant activity of plant essential oil from Armoracia rusticana (L.) on Plodia interpunctella (Lepidoptera: Pyralidae) and Sitophilus zeamais (Coleoptera: Curculionidae). Afr J Biotechnol 10(7):1200–1205. doi: 10.5897/AJB10.2023 Google Scholar
  19. Clarke B (2010) Glucosinolates, structures and analysis in food. Anal Methods 2:310–325. doi: 10.1039/B9AY00280D CrossRefGoogle Scholar
  20. Cleemput S, Becker HC (2011) Genetic variation in leaf and stem glucosinolates in resynthesized lines of winter rapeseed (Brassica napus L.). Genet Resour Crop Evol. 59:539–546Google Scholar
  21. Clossais-Besnard N, Larher F (1991) Physiological role of glucosinolates in Brassica napus. Concentration and distribution pattern of glucosinolates among plant organs during a complete life cycle. J Sci Food Agric 56:25–38. doi: 10.1002/jsfa.2740560104 CrossRefGoogle Scholar
  22. Courter JW, Rhodes AM (1969) Historical notes on horseradish. Econ Bot 23:156–164. doi: 10.1007/BF02860621 CrossRefGoogle Scholar
  23. Das S, Rajagopal J, Bhatia S, Srivastava PS, Lakshmikumaran M (1999) Assessment of genetic variation within Brassica campestris cultivars using amplified fragment length polymorphism and random amplification of polymorphic DNA markers. J Biosci 24(4):433–440CrossRefGoogle Scholar
  24. D’Auria M, Mauriello G, Raciotti R (2004) SPME-GC-MS analysis of horseradish (Armoracia rusticana). Ital J Food Sci 4(16):487–490. ISSN: 1120-1770Google Scholar
  25. De Candolle A (1890) Origin of cultivated plants. Appleton and Co., New YorkGoogle Scholar
  26. De Pascale S, Maggio A, Pernice R, Fogliano V, Barbieri G (2007) Sulphur fertilization may improve the nutritional value of Brassica rapa L. subsp. sylvestris. Eur J Agron 26:418–424. doi: 10.1016/j.eja.2006.12.009 CrossRefGoogle Scholar
  27. Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56(1):5–51. doi: 10.1016/S0031-9422(00)00316-2 PubMedCrossRefGoogle Scholar
  28. Falk KL, Tokuhisa JG, Gershenzon J (2007) The effect of sulfur nutrition on plant glucosinolate content: physiology and molecular mechanisms. Plant Biol 9:573–581. doi: 10.1055/s-2007-965431 PubMedCrossRefGoogle Scholar
  29. Faltusová Z, Kučera L, Ovesná J (2011) Genetic diversity of Brassica oleracea var. capitata gene bank accessions assessed by AFLP. Electron J Biotechnol 14(3):1–10. doi: 10.2225/vol14-issue3-fulltext-4 CrossRefGoogle Scholar
  30. Farnham MW (1996) Genetic variation among and within United States collard cultivars and landraces as determined by randomly amplified polymorphic DNA markers. J Am Soc Hortic Sci 121:374–379Google Scholar
  31. Friedman WH (1995) Horseradish preparation for the treatment of nasal and sinus dysfunction. US Paatent 5385734Google Scholar
  32. Grob K, Matile PH (1979) Vacuolar location of glucosinolatea in horseradish root cells. Plant Sci Lett 14(4):327–335. doi: 10.1016/S0304-4211(79)90281-5 CrossRefGoogle Scholar
  33. Grob K, Matile PH (1980) Capillary GC of glucosinolate-derived horseradish constituents. Phytochemistry 19(8):1789–1793. doi: 10.1016/S0031-9422(00)83814-5 CrossRefGoogle Scholar
  34. Guarrera PM (2006) Usi e tradizioni della Flora Italiana. Medicina popolare ed etnobotanica. Aracne editrice s.r.l, RomeGoogle Scholar
  35. Hammer K, Knüpffer H, Perrino P (1990) A checklist of the South Italian cultivated plants. Kulturpflanze 38:91–310CrossRefGoogle Scholar
  36. Hammer K, Knüpffer H, Laghetti G, Perrino P (1992) Seeds from the past. A catalogue of crop germplasm in South Italy and Sicily. Germplasm Institute of C.N.R (ed). Bari, Italy, p 173Google Scholar
  37. Hammer K, Laghetti G, Pignone D (2011) The meeting of two cultures and their agricultures. In: Linguistic Islands and plant genetic resources—the case of Arbëreshë. Aracne ed. s.r.l., Rome, pp 253–271Google Scholar
  38. Hanelt P, Institute of Plant Genetics and Crop Plant Research (eds) (2001) Mansfeld’s encyclopedia of agricultural and horticultural crops. Springer, Berlin, pp 1419–1420Google Scholar
  39. Hara M, Oda M, Yogo T, Sumi T, Arai R, Kuboi T, Etoh H (2008) Detection of horseradish (Armoracia rusticana) myrosinase genes in samples containing horseradish. Food Sci Technol Res 14(4):389–394. doi: 10.3136/fstr.14.389 CrossRefGoogle Scholar
  40. Hartwell JL (1982) Plants Against Cancer: A Survey. Quarterman Publications, LawrenceGoogle Scholar
  41. Helmlinger J, Rausch T, Hilgenberg W (1983) Localization of newly synthesized indoIe-3-methylglucosinolate (= glucobrassicin) in vacuoles from horseradish (Armoracia rusticana). Physiol Plant 58(3):302–310. doi: 10.1111/j.1399-3054.1983.tb04185.x CrossRefGoogle Scholar
  42. Isshiki K, Tokuora K, Mori R, Chiba S (1992) Preliminary examination of allyl isothiocyanate vapor for food preservation. Biosci Biotechnol Biochem 56:1476–1477CrossRefGoogle Scholar
  43. Jiang ZT, Li R, Yu JC (2006) Pungent components from thioglucosides in Armoracia rusticana grown in China, obtained by enzymatic hydrolysis. Food Technol Biotechnol 44(1):41–45. ISSN 1330-9862Google Scholar
  44. Kabouw P, Biere A, Van der Putten WH, Van Dam NM (2010) Intra-specific differences in root and shoot glucosinolate profiles among white cabbage (Brassica oleracea var. capitata) cultivars. J Agric Food Chem 58(1):411–417. doi: 10.1021/jf902835k
  45. Kamada H, Tachikawa Y, Saitou T, Harada H (1995) Effects of light and growth regulators on adventitious bud formation in horseradish (Armoracia rusticana). Plant Cell Rep 14(10):611–615. ISSN: 0721-085XGoogle Scholar
  46. Khomvilai C, Kashiwagi M, Yoshioka M (2006) Fungicidal activities of horseradish extract on a fish-pathogen oomycetes, Saprolegnia parasitica. Bull Fac Bioresources 33:1–7. ISSN: 0915-0471Google Scholar
  47. Kim SJ, Matsuo T, Watanabe M, Watanabe Y (2002) Effect of nitrogen and sulphur application on the glucosinolates content in vegetable turpin rape (Brassica rapa L.). Soil Sci Plant Nutr 48:43–49. doi: 10.1080/00380768.2002.10409169 CrossRefGoogle Scholar
  48. Kissen R, Rossiter J, Bones A (2009) The ‘mustard oil bomb’: not so easy to assemble?! Localization, expression and distribution of the components of the myrosinase enzyme system. Phytochem Rev 8(1):69–86. doi: 10.1007/s11101-008-9109-1 CrossRefGoogle Scholar
  49. Kliebenstein DJ, Kroyman J, Brown P, Figuth A, Pedersen D, Gershenzon J, Mitchell-Olds T (2001) Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol 126:811–825. doi: 10.1104/pp.126.2.811 PubMedCrossRefGoogle Scholar
  50. Koroleva OA, Davies A, Deeken R, Thorpe MR, Tomos AD, Hedrich R (2000) Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk. Plant Physiol 124:599–608. doi: 10.1104/pp.124.2.599 PubMedCrossRefGoogle Scholar
  51. Kosson R, Horbowicz M (2008) Effect of long term storage on some nutritive components and isothiocyanates content in roots of two horseradish types. Veg Crops Res Bull 69:155–164. doi: 10.2478/v10032-008-0030-3 Google Scholar
  52. Kosson R, Horbowicz M (2009) Some quality characteristics including isothiocyanates content of horseradish cream as affected by storage period. Veg Crops Res Bull 71:123–132. doi: 10.2478/v10032-009-0033-8 Google Scholar
  53. La Rocca F, Chisci G (2005) Il Cren. Rafano Rusticano o Barbaforte, Libreria Editrice Fiorentina. ISBN 88-89264-61-6Google Scholar
  54. Lee KC, Cheuk MW, Chan W, Ming AW, Zhao ZZ, Jiang ZH, Cai Z (2006) Determination of glucosinolates in traditional Chinese herbs by high-performance liquid chromatography and electrospray ionization mass spectrometry. Anal Bioanal Chem 386:2225–2232. doi: 10.1007/s00216-006-0882-7 PubMedCrossRefGoogle Scholar
  55. Lelario F, Bianco G, Bufo SA, Cataldi TRI (2012) Establishing the occurrence of major and minor glucosinolates in Brassicaceae by LC–ESI-hybrid linear ion-trap and Fourier-transform ion cyclotron resonance mass spectrometry. Phytochemistry 73:74–83. doi: 10.1016/j.phytochem.2011.09.010 PubMedCrossRefGoogle Scholar
  56. Li X, Kushad MM (2004) Correlation of glucosinolate content to myrosinase activity in horseradish (Armoracia rusticana). J Agric Food Chem 52:6950–6955. doi: 10.1021/jf0401827 PubMedCrossRefGoogle Scholar
  57. Li S, Schonhof I, Krumbein A, Li L, Stützel H, Schreiner M (2007) Glucosinolate concentration in turnip (Brassica rapa ssp. rapifera L.) roots as affected by nitrogen and sulfur supply. J Agric Food Chem 55:8452–8457. doi: 10.1021/jf070816k PubMedCrossRefGoogle Scholar
  58. Lotti C, Marcotrigiano AR, De Giovanni C, Resta P, Ricciardi A, Zonno V, Fanizza G, Ricciardi L (2008) Univariate and multivariate analysis performed on bio-agronomical traits of Cucumis melo L. germplasm. Genet Resour Crop Evol 55:511–522. doi: 10.1007/s10722-007-9257-y CrossRefGoogle Scholar
  59. Łuczaj Ł, Szymański WM (2007) Wild vascular plants gathered for consumption in the Polish countryside: a review. J Ethnobiol Ethnomed 3:17. doi: 10.1186/1746-4269-3-17 PubMedCrossRefGoogle Scholar
  60. Majewska A, Bałasińska B, DąbrowskaB (2004) Antioxidant properties of leaf and root extract and oil from different types of horseradish (Armoracia rusticana Gaertn.). Folia Horticulturae 16(1):15–22Google Scholar
  61. Margalé E, Hervé Y, Hue J, Quiros CF (1995) Determination of genetic variability by RAPD markers in cauliflower, cabbage and kale local cultivars from France. Genet Resour Crop Evol 42(3):281–289. doi: 10.1007/BF02431263 CrossRefGoogle Scholar
  62. Mari M, Bertolini P, Pratella GC (2003) Non-conventional methods for the control of post-harvest pear diseases. J Appl Microbiol 94:761–766. doi: 10.1046/j.1365-2672.2003.01920.x PubMedCrossRefGoogle Scholar
  63. Matsuda H, Ochi M, Nagatomo A, Yoshikawa M (2007) Effects of allylisothiocyanate from horseradish on several experimental gastric lesions in rats. Eur J Pharmacol 561(1–3):172–181. doi: 10.1016/j.ejphar.2006.12.040 PubMedCrossRefGoogle Scholar
  64. McCann J (2004) The horseradish plant.
  65. Mevy JP, Rabier J, Quinsac A, Krouti M, Ribaillier D (1997) Glucosinolate contents of regenerated plantlets from embryoids of horseradish. Phytochemistry 44(8):1469–1471. doi: 10.1016/S0031-9422(96)00759-5 CrossRefGoogle Scholar
  66. Mevy JP, Rabier J, Quinsac A, Ribaillier D (1999) Sucrose metabolism and indoleglucosinolate production of immobilized horseradish cells. Plant Cell, Tissue Organ Cult 57(3):163–171. doi: 10.1023/A:1006325222785 CrossRefGoogle Scholar
  67. Mithen R (2001) Glucosinolates—biochemistry, genetics and biological activity. Plant Growth Regul 34(1):91–103. doi: 10.1023/A:1013330819778 CrossRefGoogle Scholar
  68. Mithen RF, Dekker M, Verkerk M, Rabot S, Johnson I (2000) The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J Sci Food Agric 80:967–984. doi: 10.1002/(SICI)1097-0010(20000515)80:7<967:AID-JSFA597>3.0.CO;2-V CrossRefGoogle Scholar
  69. Moerman DE (1998) Native American etnobotany. Timber Press, PortlandGoogle Scholar
  70. Møldrup ME, Geu-Flores F, Olsen CE, Halkier BA (2011) Modulation of sulfur metabolism enables efficient glucosinolate engineering. BMC Biotechnol 11:12. doi: 10.1186/1472-6750-11-12 PubMedCrossRefGoogle Scholar
  71. Mucete D, Radu F, Poinana M, Jianu I (2006) Myrosinase activity in Armoracia rusticana. Bull USAMV-CN 62:88–93Google Scholar
  72. Munday CM (2002) Selective induction of phase II enzymes in the urinary bladder of rats by allyl isothiocyanate, a compound derived from brassica vegetables. Nutr Cancer 44(1):52–59. doi: 10.1207/S15327914NC441_7 PubMedCrossRefGoogle Scholar
  73. Murillo G, Mehta R (2001) Cruciferous vegetables and cancer prevention. Nutr Cancer 41:17–28. doi: 10.1080/01635581.2001.9680607 PubMedGoogle Scholar
  74. Negi MS, Sabharwal V, Bhat SR, Lakshmikumaran M (2004) Utility of AFLP markers for the assessment of genetic diversity within Brassica nigra germplasm. Plant Breed 123(1):13–16. doi: 10.1046/j.0179-9541.2003.00926.x CrossRefGoogle Scholar
  75. Omirou MD, Papadopoulou KK, Papastylianou I, Constantinou M, Karpouzas DG, Asimakopoulos I, Ehaliotis C (2009) Impact of nitrogen and sulfur fertilization on the composition of glucosinolates in relation to sulfur assimilation in different plant organs of broccoli. J Agric Food Chem 57:9408–9417. doi: 10.1021/jf901440n PubMedCrossRefGoogle Scholar
  76. Park IK, Choi KS, Kim DH, Choi IH, Kim LS, Bak WC, Choi JW, Shin SC (2006) Fumigant activity of plant essential oils and components from horseradish (Armoracia rusticana), anise (Pimpinella anisum) and garlic (Allium sativum) oils against Lycoriella ingenua (Diptera: Sciaridae). Pest Manag Sci 62(8):723–728. doi: 10.1002/ps.1228 PubMedCrossRefGoogle Scholar
  77. Perlaki Z, Djurovka M (2009) Horseradish root yield depending on organic and mineral fertilizers. Contemp Agric 58:106–111. ISSN 0350-1205Google Scholar
  78. Pieroni A, Gray C (2008) Herbal and food folk medicines of the Russlanddeutschen living in Künzelsau/Taläcker, South-Western Germany. Phytother Res 22:889–890. doi: 10.1002/ptr.2410 PubMedCrossRefGoogle Scholar
  79. Pieroni A, Quave CL (2005) Traditional pharmacopoeias and medicines among Albanians and Italians in southern Italy: a comparison. J Ethnopharmacol 101:258–270. doi: 10.1016/j.jep.2005.04.028 PubMedCrossRefGoogle Scholar
  80. Pieroni A, Quavec CL, Santorod RF (2004) Folk pharmaceutical knowledge in the territory of the Dolomiti Lucane, inland southern Italy. J Ethnopharmacol 95:373–384. doi: 10.1016/j.jep.2004.08.012 PubMedCrossRefGoogle Scholar
  81. Pieroni A, Nebel S, Santoro RF, Heinrich M (2005) Food for two seasons: culinary uses of non-cultivated local vegetables and mushrooms in a south Italian village. Int J Food Sci Nutr 56(4):245–272. doi: 10.1080/09637480500146564 PubMedCrossRefGoogle Scholar
  82. Rabbani MA, Murakami Y, Kuginuki Y, Takayanagi K (1998) Genetic variation in radish (Raphanus sativus L.) germplasm from Pakistan using morphological traits and RAPDs. Genet Resour Crop Evol 45:307–316. doi: 10.1023/A:1008619823434 CrossRefGoogle Scholar
  83. Redovnikovic IR, Peharec P, Rasol MK, Delonga K, Brkic K, Vorkapic-Furac J (2008a) Glucosinolate profiles, myrosinase and peroxidase activity in horseradish (Armoracia lapathifolia Gilib.) Plantlets, Tumour and Teratoma Tissues Food Technol Biotechnol 46(3):317–321. ISSN 1330-9862Google Scholar
  84. Redovnikovic IR, Glivetic T, Delonga K, Vorkapic-Furac J (2008b) Glucosinolates and their potential role in plant. Periodicum Biologorum 110(4):297–309. ISSN 0031-5362Google Scholar
  85. Rhodes AM, Carmer SG, Courter J (1969) Measurement and classification of genetic variability in horseradish. J Am Soc Hortic Sci 94:98–102Google Scholar
  86. Rosa AS, Heaney R, Fenwick G, Portas C (1997) Glucosinolates in crop plants. In: Janick J (ed) Horticultural reviews, vol 19. USA, pp 99–215Google Scholar
  87. Rosen CJ, Fritz VA, Gardner GM, Hecht SS, Carmella SG, Kenney PM (2005) Cabbage yield and glucosinolate concentrations as affected by nitrogen and sulfur fertility. HortScience 40:1493–1498Google Scholar
  88. Rosengarten F Jr (1969) The book of the spices. Livingston Pub. Co., WynnewoodGoogle Scholar
  89. Sahasrabudhe MR, Mullin WJ (1980) Dehydration of horseradish roots. J Food Sci 45:1440–1441. doi: 10.1111/j.1365-2621.1980.tb06577.x CrossRefGoogle Scholar
  90. Sampliner D, Miller A (2009) Ethnobotany of horseradish (Armoracia rusticana, Brassicaceae) and its wild relatives (Armoracia spp.): reproductive biology and local uses in their native ranges. Econ Bot 63(3):303–313. doi: 10.1007/s12231-009-9088-1 CrossRefGoogle Scholar
  91. Sarikamiş G, Balkaya A, Yanmaz R (2009) Glucosinolates within a collection of white head cabbages (Brassica oleracea var. capitata subvar. alba) from Turkey. Afr J Biotechnol 8(19):5046–5052. doi: 10.2225/vol14-issue3-fulltext-4 Google Scholar
  92. Sarli G, De Lisi A, Agneta R, Grieco S, Ierardi G, Montemurro F, Negro D, Montesano V (2012) Collecting horseradish (Armoracia rusticana, Brassicaceae): local uses and morphological characterization in Basilicata (Southern Italy) Genet Resour Crop Evol 59(5): 889–899. doi: 10.1007/s10722-011-9730-5
  93. Schaffer A (1981) The history of horseradish as the bitter herb of Passover. Gesher 8:217–237Google Scholar
  94. Shehata AM, Skirvin RM, Norton MA (2008) Leaf morphology affects horseradish regeneration in vitro. Int J Veg Sci 15(1):24–27. doi: 10.1080/19315260802446385 CrossRefGoogle Scholar
  95. Shehata AM, Mulwa RMS, Babadoost M, Uchanski M, Norton MA, Skirvin R, Walters SA (2009) Horseradish: botany, horticulture, breeding, in horticultural reviews. In: Janick J (ed) vol 35. Wiley, Hoboken. doi: 10.1002/9780470593776.ch4
  96. Srivastava SK, Xiao D, Lew KL, Hershberger P, Kokkinakis DM, Johnson CS, Trump DL, Singh SV (2003) Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits growth of PC-3 human prostate cancer xenografts in vivo. Carcinogenesis 24(10):1665–1670. doi: 10.1093/carcin/bgg123 PubMedCrossRefGoogle Scholar
  97. Sultana T, Savage GP, McNeil DL, Porter NG, Clark B (2003) Comparison of flavour in wasabi and horseradish. J Food Agric Environ 1(2):117–121Google Scholar
  98. Talalay P, Fahey JW (2001) Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J Nutr 131(11):3027S–3033SPubMedGoogle Scholar
  99. Tedeschi P, Leis M, Pezzi M, Civolani S, Maietti A, Brandolini V (2011) Insecticidal activity and fungitoxicity of plant extracts and components of horseradish (Armoracia rusticana) and garlic (Allium sativum). J Environ Sci Health B 46(6):486–490. doi: 10.1080/03601234.2011.583868 PubMedGoogle Scholar
  100. Tierens KFMJ, Thomma BPHJ, Brouwer M, Schmidt J, Kistner K, Porzel A, Mauch-Mani B, Cammue BPA, Broekaert WF (2001) Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens. Plant Physiol 125:1688–1699. doi: 10.1104/pp.125.4.1688 PubMedCrossRefGoogle Scholar
  101. Velasco P, Cartea ME, González C, Vilar M, Ordás M (2007) Factors affecting the glucosinolate content of kale (Brassica oleracea acephala group). J Agric Food Chem 55(3):955–962. doi: 10.1021/jf0624897 PubMedCrossRefGoogle Scholar
  102. Velasco P, Francisco M, Cartea ME (2010) Glucosinolates in Brassica and cancer. In: Watson RR, Preedy VR (eds) Bioactive foods and extracts. Cancer treatment and prevention, 1st edn. CRC Press, USA, pp 3–29. doi: 10.1201/b10330-3
  103. Verhoeven DTH, Verhagen H, Goldbohm RA, Brant PAVD, Poppel GV (1997) A review of mechanisms underlying anticarcinogenicity by brassica vegetables. Chem Biol Interact 103:79–129. doi: 10.1016/S0009-2797(96)03745-3 PubMedCrossRefGoogle Scholar
  104. Veteläinen M, Negri V, Maxted N (2009) European landraces: on-farm conservation, management and use. Bioversity Technical Bulletin No. 15. Bioversity International, Rome, Italy. ISBN 978-92-9043-805-2Google Scholar
  105. Walters SA, Wahle EA (2010) Horseradish production in Illinois. HorTecnology 20:267–276Google Scholar
  106. Ward SM, Delaquis PJ, Holley RA, Mazza G (1998) Inhibition of spoilage and pathogenic bacteria on agar and pre-cooked roast beef by volatile horseradish distillates. Food Res Int 31(1):19–26. doi: 10.1016/S0963-9969(98)00054-4 CrossRefGoogle Scholar
  107. Weber WW (1949) Seed production in horseradish. J Hered 40:223–227Google Scholar
  108. Wedelsbäck Bladh K, Olsson KM (2011) Introduction and use of horseradish (Armoracia rusticana) as food and medicine from antiquity to the present: emphasis on the Nordic countries. J Herbs Spices Med Plants 17(3):197–213. doi: 10.1080/10496475.2011.595055 CrossRefGoogle Scholar
  109. Weil MJ, Zhang Y, Nair MG (2005) Tumor cell proliferation and cyclooxygenase inhibitory constituents in horseradish (Armoracia rusticana) and wasabi (Wasabia japonica). J Agric Food Chem 53(5):1440–1444. doi: 10.1021/jf048264i PubMedCrossRefGoogle Scholar
  110. Winiarczyk K, Bednara J (2008) The progamic phase and seed formation in Armoracia rusticana. Plant Breed 127(2):203–207. doi: 10.1111/j.1439-0523.2007.01439.x CrossRefGoogle Scholar
  111. Winiarczyk K, Tchòrzewska D, Bednara J (2007) Development of the male gametophyte of an infertile plant Armoracia rusticana Gaertn. Plant Breed 126(4):433–439. doi: 10.1111/j.1439-0523.2007.01365.x CrossRefGoogle Scholar
  112. Wittstock U, Halkier BA (2002) Glucosinolate research in the Arabidopsis era. Trends Plant Sci 7(6):263–270. doi: 10.1016/S1360-1385(02)02273-2 PubMedCrossRefGoogle Scholar
  113. Wu H, Zhang GA, Zeng S, Lin KC (2009) Extraction of allyl isothiocyanate from horseradish (Armoracia rusticana) and its fumigant insecticidal activity on four stored-product pests of paddy. Pest Manag Sci 65(9):1003–1008. doi: 10.1002/ps.1786 PubMedCrossRefGoogle Scholar
  114. Yang B, Quiros CF (2010) Survey of glucosinolate variation in leaves of Brassica rapa crops. Genet Resour Crop Evol 57(7):1079–1089. doi: 10.1007/s10722-010-9549-5 CrossRefGoogle Scholar
  115. Yano Y, Satomi M, Oikawa H (2006) Antimicrobial effect of spices and herbs on Vibrio parahaemolyticus. Int J Food Microbiol 111(1):6–11. doi: 10.1016/j.ijfoodmicro.2006.04.031 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Rosa Agneta
    • 1
  • Christian Möllers
    • 2
  • Anna Rita Rivelli
    • 3
  1. 1.Doctoral School of Crop Systems, Forestry and Environmental SciencesUniversity of BasilicataPotenzaItaly
  2. 2.Department of Crop SciencesGeorg-August-Universität GöttingenGöttingenGermany
  3. 3.School of Agricultural, Forest, Food and Environmental SciencesUniversity of BasilicataPotenzaItaly

Personalised recommendations