Skip to main content
Log in

Development of new sources of tetraploid Arachis to broaden the genetic base of cultivated groundnut (Arachis hypogaea L.)

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Groundnut, an important crop of many countries of the world, is susceptible to a range of diseases and pests. High levels of resistances are not available in the cultivated gene pool as the crop is said to have a narrow genetic base. Narrow genetic base is attributed to the evolution of the crop which took place by the combination of A and B genome species, and later doubling their chromosome number, giving rise to tetraploid cultivated groundnut. Direct utilization of cross-compatible wild relatives, which are diploids, to broaden the genetic base and introduction of useful traits, is not a straight-forward process due to ploidy differences between the cultivated species and wild relatives. Hence amphiploids and autotetraploids were created by not only combining the putative genomes, but many other A and B genome species, thus producing a highly variable population of tetraploid groundnuts also called new sources of Arachis hypogaea. This study describes the development and characterization of newly generated tetraploid groundnuts and the level of molecular diversity as assessed by DArT markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci USA 100:4649–4654

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi SL, Upadhyaya HD, Stalker HT, Blair MW, Bertioli D, Nielen S, Ortiz R (2008) Enhancing crop gene pools of cereals and legumes with beneficial traits using wild relatives. Plant Breeding Reviews, vol 30. Wiley, New York, pp 179–280

  • Fávero AP, Simpson CE, Valls JFM, Yuksel B (2006) Study of the evolution of cultivated peanut through crossability studies among Arachis ipaensis, A. duranensis, and A. hypogaea. Crop Sci 46:1546–1552

    Article  Google Scholar 

  • Fernie A, Tanmor Y, Zamir D (2006) Natural genetic variation for improving crop quality. Curr Opin Plant Biol 9(2):196–202

    Article  PubMed  Google Scholar 

  • Fu Q, Zhang P, Tan L, Zhu Z, Ma D, Fu Y, Zhan X, Cai H, Sun C (2010) Analysis of QTLs for yield-related traits in YuaniJang common wild rice (oryza rufipogon griff). J Genet Genomics 37(2):147–157

    Article  PubMed  CAS  Google Scholar 

  • GCP (2005). Unlocking the genetic diversity in peanut’s wild relatives with genomic and genetic tools targeted subprogramme: SP3—trait capture for crop. Improvement Proceedings of Generation Challenge Program 2005 annual research meeting: Mid year project reports, pp 6–8

  • Gur A, Zamir D (2004) Unused natural variation can lift yield barriers in plant breeding. PLoS Biol 2:e245

    Article  PubMed  Google Scholar 

  • Hoisington D, Khairallah M, Reeves T, Ribaut JM, Skovmand B, Taba S, Warburton M (1999) Plant genetic resources: what can they contribute toward increased crop productivity. Proc Natl Acad Sci USA 96:5937–5943

    Article  PubMed  CAS  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25

    Article  PubMed  CAS  Google Scholar 

  • Joly S, Rauscher JT, Sherman-Broyles SL, Brown AHD, Doyle JJ (2004) Evolutionary dynamics and preferential expression of homeologous 18S–5. 8S–26S nuclear ribosomal genes in natural and artificial Glycine allopolyploids. Mol Biol Evol 21:1409–1421

    Article  PubMed  CAS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160:1651–1659

    PubMed  CAS  Google Scholar 

  • Kochert G, Halward T, Branch WD, Simpson CE (1991) RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet 81:565–570

    Article  CAS  Google Scholar 

  • Kochert G, Stalker HT, Gimenes M, Galgaro L, Lopes CR, Moore K (1996) RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut Arachis hypogaea (Leguminosae). Amer J Bot 83:1282–11291

    Article  CAS  Google Scholar 

  • Kovarik A, Pires JC, Leitch AR, Lim KY, Sherwood AM, Matyasek R, Rocca J, Soltis DE, Soltis PS (2005) Rapid concerted evolution of nuclear ribosomal DNA in two Tragopogon allopolyploids of recent and recurrent origin. Genetics 169:931–944

    Article  PubMed  CAS  Google Scholar 

  • Krapovickas A, Gregory WC (1994) Taxonomy del genero Arachis (Leguminosae). Bonplandia 8:1–186

    Google Scholar 

  • Lukens LN, Pires JC, Leon E, Vogelzang R, Oslach L, Osborn T (2006) Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol 140:336–348

    Article  PubMed  CAS  Google Scholar 

  • Ma XF, Gustafson JP (2006) Timing and rate of genome variation in triticale following allopolyploidization. Genome 49:950–958

    Article  PubMed  CAS  Google Scholar 

  • Madlung A, Tyagi AP, Watson B, Jiang H, Kagochi T, Doerge RW, Martienssen R, Comai L (2005) Genomic changes in synthetic Arabidopsis polyploids. Plant J 41:221–230

    Article  PubMed  CAS  Google Scholar 

  • Mallikarjuna N, Sastri DC (2002) Morphological, cytological and disease resistance studies of the intersectional hybrids between Arachis hypogaea L. and A. glabrata Benth. Euphytica 126(2):161–167

    Article  CAS  Google Scholar 

  • Mallikarjuna N, Tandra SK (2006) Use of 2n pollen in generating interspecific derivatives of groundnut. IAN 26:8–9

    Google Scholar 

  • McCouch S (2004) Diversifying selection in plant breeding. PLoS Biol 2(10): e347. doi: 10.1371/journal.pbio.0020347

  • McCouch SR, Sweeney M, Li J, Jiang H, Thomson M, Septiningsih E, Moncada P, Xiao J, Coburn J, Fraker E, Garris A, Tai T, Martinez C, Tohme J, Sugiono M, McClung A, Yuan LP, Ahn SN (2005) Identification and transfer of trait-enhancing alleles from wild species. In: Brar DS, Mackill DJ, Hardy B (eds) Rice genetics V: proceedings of the fifth international rice genetics symposium, 19–23 November 2005. World Scientific Publishing and International Rice Research Institute, Manila, Philippines, pp 209–232

  • Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ 33:670–685

    Article  PubMed  CAS  Google Scholar 

  • Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in the wheat (AegilopsTriticum) group. Plant Cell 13:1735–1747

    Article  PubMed  CAS  Google Scholar 

  • Pires JC, Zhao J, Schranz ME, Leon EJ, Quijada PA, Lukens LN, Osborn TC (2004) Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae). Biol J Linn Soc 82:675–688

    Article  Google Scholar 

  • Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, Viegas W, Pikaard CS (2004) Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Natl Acad Sci USA 101:18240–18245

    Article  PubMed  CAS  Google Scholar 

  • Sanford JC (1983) Ploidy manipulations. In: Moore JN, Janick J (eds) Methods in fruit breeding. Purdue University Press, West Lafayette, IN, pp 100–123

    Google Scholar 

  • Seijo JG, Lavia GI, Fernández A, Krapovickas A, Ducasse DA, Bertioli DJ, Moscone EA (2007) Genomic relationships between the cultivated peanut (Arachis hypogaea, Leguminosae) and its close relatives revealed by double GISH. Am J Bot 94:1963–1971

    Article  PubMed  Google Scholar 

  • Simpson CE, Starr JL, Nelson SC, Woodard KE, Smith OD (1993) Registration of TxAG-6 and TxAG-7 peanut germplasm. Crop Sci 33:1418

    Article  Google Scholar 

  • Singh AK, Simpson CE (1994) Biosystematics and genetic resources, Chap. 4. In: Smartt J (ed) The Groundnut Crop: a scientific basis for improvement. Chapman and Hall, London

    Google Scholar 

  • Song K, LU P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of brassica and its implications for polyploidy evolution. Proc Natl Acad Sci 92:7719–7723

    Article  PubMed  CAS  Google Scholar 

  • Stalker HT (1991) A new species in the section Arachis of peanuts with D genome. Am J Bot 78:630–637

    Article  Google Scholar 

  • Stalker HT, Dhesi JS, Parry DC, Hohn JH (1991) Cytological and interfertility relationships of Arachis section Arachis. Am J Bot 78:238–246

    Article  Google Scholar 

  • Tanksley S, Fulton T (2007) Dissecting quantitative trait variation—examples from the tomato. Euphytica 145:365–370

    Article  Google Scholar 

  • Udall JA, Quijada PA, Osborn TC (2005) Detection of chromosomal rearrangements derived from homeologous recombination in four mapping populations of Brassica napus L. Genetics 169:967–979

    Article  PubMed  CAS  Google Scholar 

  • Wendel JF, Schnabel A, Seelanan T (1995) Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci USA 92:280–284

    Article  PubMed  CAS  Google Scholar 

  • Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalini Mallikarjuna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallikarjuna, N., Senthilvel, S. & Hoisington, D. Development of new sources of tetraploid Arachis to broaden the genetic base of cultivated groundnut (Arachis hypogaea L.). Genet Resour Crop Evol 58, 889–907 (2011). https://doi.org/10.1007/s10722-010-9627-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-010-9627-8

Keywords

Navigation