Skip to main content

Groundnut

  • Chapter
  • First Online:
Broadening the Genetic Base of Grain Legumes

Abstract

Groundnut, a crop rich in nutrients, originated in South America and spread to the rest of the world. Cultivated groundnut contains a fraction of the genetic diversity present in their closely related wild relatives, which is not more than 13 %, due to domestication bottleneck. Closely related ones are placed in section Arachis, which have not been extensively utilized until now due to ploidy differences between the cultivated and wild relatives. In order to overcome Arachis species utilization bottleneck, a large number of tetraploid synthetics were developed at the Legume Cell Biology Unit of Grain Legumes Program, ICRISAT, India. Evaluation of synthetics for some of the constraints showed that these were good sources of multiple disease and pest resistances. Some of the synthetics were utilized by developing ABQTL mapping populations, which were screened for some biotic and abiotic constraints. Phenotyping experiments showed ABQTL progeny lines with traits of interest necessary for the improvement of groundnut.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anon (1992) The medium term plan, 1994-1998. Main report, vol 1. ICRISAT, Patancheru, p 80

    Google Scholar 

  • Awad HM, Boersma MG, Vervoort J, Rietjens IM (2000) Peroxidase catalyzed formation of quercetin quinone methide-glutathione adducts. Arch Biochem Biophys 378:224–233

    Article  PubMed  CAS  Google Scholar 

  • Burrow MD, Starr JL, Paterson AH, Simpson CE (1996) Identification of peanut (Arachis hypogaea L) RAPD markers diagnostic of root- knot nematode (Meloidogyne arenaria) resistance. Mol Breed 2:369–379

    Article  Google Scholar 

  • Clemente A, Gee JM, Johnson IT, Mackenzie DA, Domoney C (2005) Pea (Pisum sativum L.) protease inhibitors from the Bowman-Birk class influence the growth of human colorectal adenocarcinoma HT29 cells in vitro. J Agric Food Chem 16(23):8979–8986

    Article  Google Scholar 

  • Craft BD, Kosinska A, Amarowwicz R, Ronald BP (2010) Antioxidant properties of extracts obtained from raw and dry roasted and oil-roasted US peanuts of commercial importance. Plant Food Hum Nutr 65(3):311–318

    Article  CAS  Google Scholar 

  • Dwivedi SL, Gurtu S, Nigam SN (2002) ALFP diversity among selected foliar diseases resistant groundnut (Arachis hypogaea L.) germplasm. Indian J Plant Genet Resour 15:46–50

    Google Scholar 

  • Dwivedi SL, Upadhyaya HD, Stalker HT, Blair MW, Bertioli D, Nielen S, Ortiz R (2008) Enhancing crop gene pools of cereals and legumes with beneficial traits using wild relatives. Plant Breed Rev 30:179–280

    CAS  Google Scholar 

  • Favero AP, Simpson CE, Valls JFM, Vello NA (2006) Study of the evolution of cultivated peanut through crossability studies among Arachis ipaënsis, A. duranensis, and A. hypogaea. Crop Sci 46:1546–1552

    Article  Google Scholar 

  • Foncéka D, Hodo-Abalo T, Rivallan R, Faye I, Sall MN (2009) Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid. BMC Plant Biol 9:103

    Article  PubMed  PubMed Central  Google Scholar 

  • Fonceka D, Tossim HA, Rivallan R, Vignes H, Faye I (2012) Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding. BMC Plant Biol 12:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Fraser GE, Sabates J, Beeson WL, Strahan TM (1992) A possible protective effect of nut consumption on risk of coronary heart disease: The Adventist Health Study. Arch Intern Med 152:1416–1424

    Article  PubMed  CAS  Google Scholar 

  • Garcia GM, Stalker HT, Shroeder E, Kochert G (1996) Identification of RAPD, SCAR, and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogaea. Genome 39:836–845

    Article  PubMed  CAS  Google Scholar 

  • GCP (2005) Unlocking the genetic diversity in peanut’s wild relatives with genomic and genetic tools targeted subprogram: SP3- trait capture for crop. In: Improvement proceedings of generation challenge program 2005. Annual report and year three (2006) Workplan, Mexico, 56pp

    Google Scholar 

  • Gowda MVC, Motagi BN, Naidu GK, Diddimani SN, Sheshagiri R (2002) GPBD4: a Spanish bunch groundnut genotype resistant to rust and late leafspot. Int Arachis Newsl 22:29–32

    Google Scholar 

  • Hu FB, Stampfer MJ, Manson JE, Rimm EB, Colditz GA, Rosner BA, Speizer FE, Hennekens CH, Willett WC (1998) Frequent nut consumption and risk of coronary heart diseases in women: prospective cohort study. Br Med J 317:1341–1345

    Article  CAS  Google Scholar 

  • Husain F, Mallikarjuna N (2012) Genetic diversity in Bolivian landrace lines of groundnut (Arachis hypogaea L.). Indian J Genet 72(3):384–389

    Google Scholar 

  • Janila P, Nigam SN, Pandey MK, Nagesh P, Varshney RK (2013) Groundnut improvement: use of genetic and genomic tools. Front Plant Sci 4:23

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Johansen C, Nageswara Rao RC (1996) Maximizing groundnut yields. In: Renard C, Gowda CLL, Nigam SN, Johansen C (eds) Achieving high groundnut yields. Proceedings of international workshop, 25–29 Aug 1995, Laixi City, Shandong. ICRISAT, Patancheru, pp 117–127

    Google Scholar 

  • Khera P, Upadhyaya HD, Pandey MK, Roorkiwal M, Sriswathi M, Janila P, Yufang Guo Y, Michael-McKain MR, Ervin D, Nagy ED, Steven J, Knapp SJ, James Leebens-Mack J, Conner JA, Ozias-Akins P, Varshney RK (2013) The Plant Genome 6. Crop Science Society of America, Madison. doi:10.3835/plantgenome2013.06.0019

  • Kochert G, Halward T, Branch WD, Simpson CE (1991) RFLP variability in peanut (Arachis hypogaea L) cultivars and wild species. Theor Appl Genet 81:565–570

    Article  PubMed  CAS  Google Scholar 

  • Kochert G, Stalker HT, Gimenes M, Galgar L, Lopes CR, Moore K (1996) RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot 83:1282–1291

    Article  CAS  Google Scholar 

  • Koslak RM, Chamberlin MA, Palmer RG, Bowen BA (1997) Programmed cell death in the root cortex of soybean root necrosis mutants. Plant J 11:729–745

    Article  Google Scholar 

  • Krapovickas A, Gregory WC (1994) Taxonomia del genero Arachis (Leguminosae). Bonplandia 8:1–186

    Google Scholar 

  • Mallikarjuna N (2002) Gene introgression from A. glabrata into A. hypogaea, A. duranensis and A. diogoi. Euphytica 124:99–105

    Article  CAS  Google Scholar 

  • Mallikarjuna N (2005) Hybrids between Arachis hypogaea and A. chiquitana (section Procumbentes). Peanut Sci 32:148–152

    Article  Google Scholar 

  • Mallikarjuna N, Hoisington D (2009) Peanut improvement: production of fertile hybrids and backcross progeny between Arachis hypogaea and A. kretschmeri. Food Sci 1:457–462

    Article  Google Scholar 

  • Mallikarjuna N, Sastri DC (1985) In vitro culture of ovules and embryos from some interspecific in the genus Arachis. In: Proceedings of an international workshop on the cytogenetics of arachis. ICRISAT, Patancheru, Andhra Pradesh, India, pp 153–158

    Google Scholar 

  • Mallikarjuna N, Sastri DC (2002) Morphological, cytological and disease resistance studies of the intersectional hybrids between Arachis hypogaea L. and A. glabrata Benth. Euphytica 126(2):161–167

    Article  CAS  Google Scholar 

  • Mallikarjuna N, Pande S, Jadhav DR, Sastri DC, Narayan Rao J (2004a) Introgression of disease resistance genes from Arachis kempff-mercadoi into cultivated groundnut. Plant Breed 123(6):573–576

    Article  CAS  Google Scholar 

  • Mallikarjuna N, Jadhav DR, Kranthi KR, Kranthi S (2004b) Influence of foliar chemical compounds on the development of Spodoptera litura (Fab.) on interspecific derivatives of groundnut. J Appl Entomol 128(5):321–328

    Article  CAS  Google Scholar 

  • Mallikarjuna N, Senthilvel S, Hoisington D (2011a) Development of synthetic groundnuts (Arachis hypogaea L) to broaden the genetic base of cultivated groundnut. Genet Resour Crop Evol 58:889–907

    Article  Google Scholar 

  • Mallikarjuna N, Senthivel S, Jadhav DR, Saxena K, Sharma HC, Upadhyaya HD, Rathore A, Varshney R (2011b) Progress in the utilization of Cajanus platycarpus (Benth.) Maesen in pigeonpea improvement. Plant Breed 130(5):507–514

    Article  CAS  Google Scholar 

  • Mallikarjuna N, Srikanth S, Vellanki RK, Jadhav DR, Das K, Upadhyaya HD (2012a) Meiotic analysis of hybrids between cultivated and synthetic tetraploid groundnuts. Plant Breed 131:135–138

    Article  Google Scholar 

  • Mallikarjuna N, Jadhav DR, Reddy K, Husain F, Das K (2012b) Screening new Arachis amphidiploids, and autotetraploids for resistance to late leaf spot by detached leaf technique. Eur J Plant Pathol 132:17–21

    Article  Google Scholar 

  • Mayee CD, Datar VV (1988) Diseases of groundnut in the tropics. Rev Trop Plant Pathol 5:169–198

    Google Scholar 

  • Mercer LC, Wynne JC, Young CT (1990) Inheritance of fatty acid content in peanut oil. Peanut Sci 17:17–21

    Article  CAS  Google Scholar 

  • Moretzsohn MC, Gouvea EG, Inglis PW, Leal-Bertioli SCM, Valls JFM, Bertioli DJ (2012) A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. Ann Bot 111:113–126

    Article  PubMed  PubMed Central  Google Scholar 

  • Panchbhavi KS, Nethradani CR (1987) Yield of groundnut as affected by varying larval density of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Indian J Agric Sci 57:525–527

    Google Scholar 

  • Pandey MK, Monyo ES, Ozias-Akins P, Liang X, Guimarães P, Nigam SN, Upadhyaya HD, Janila P, Zhang X, Guo B, Cook DR, Bertioli DJ, Michelmore R, Varshney RK (2012) Advances in Arachis genomics for peanut improvement. J Biotechnol Adv 30:639–651

    Article  CAS  Google Scholar 

  • Prasad ER, Dutta-Gupta A, Padmashree K (2010) Insecticidal potential of Bowman-Birk proteinase inhibitors from red gram (Cajanus cajan) and black gram (Vigna mungo) against Lepidopteran insect pests. Pestic Biochem Physiol 98:80–88

    Article  CAS  Google Scholar 

  • Pravst I, Zmitek K (2010) Coenzyme Q10 contents in foods and fortification strategies. Crit Rev Food Sci Nutr 50(4):269–280

    Article  PubMed  CAS  Google Scholar 

  • Prineas RJ, Kushi LH, Folsom AR, Bostick RM, Wu Y (1993) Walnuts and serum lipids (letter). N Engl J Med 329:359

    PubMed  CAS  Google Scholar 

  • Reddy DVR (1998) Control measures for the economically important peanut viruses. In: Hadidi A, Khetarpal RK, Koganezawo A (eds) Plant virus disease control. American Phytopathological Society, APS Press, St. Paul, pp 541–546

    Google Scholar 

  • Reddy AS, Reddy LJ, Mallikarjuna N, Abdurahman MD, Reddy YV, Bramel PJ, Reddy DVR (2000) Identification of resistance to Peanut bud necrosis virus (PBNV) in wild Arachis germplasm. Ann Appl Biol 37:135–139

    Article  CAS  Google Scholar 

  • Robledo G, Lavia GI, Seijo G (2009) Species relations among wild Arachis species with the A genome as revealed by FISH mapping of r-DNA loci and heterochromatin detection. Theor Appl Genet 118:1295–1307

    Article  PubMed  CAS  Google Scholar 

  • Ryan CA (1990) Protease inhibitors in plants. Genes for improving defenses against insects and pathogens. Annu Rev Phytopathol 28:425–449

    Article  CAS  Google Scholar 

  • Sanders TH, McMichel RW, Hendria KW (2000) Occurrence of resveratrol in edible peanuts. J Agric Food Chem 48:1234–1246

    Article  Google Scholar 

  • Sanford JC (1983) Ploidy manipulation. In: Moore JN, Janick J (eds) Method in fruit breeding. Purdue University Press, West Lafayette, pp 100–123

    Google Scholar 

  • Savage GP, Keenan JI (1994) The composition and nutritive value of groundnut kernels. In: Smartt J (ed) The groundnut crop. A scientific basis for improvement. Chapman & Hall, London/New York

    Google Scholar 

  • Seijo JG, Lavia GI, Fernández A, Krapovickas A, Ducasse DA, Bertioli DJ, Moscone EA (2007) Genomic relationships between the cultivated peanut (Arachis hypogaea, Leguminosae) and its close relatives revealed by double GISH. Am J Bot 94:1963–1971

    Article  PubMed  Google Scholar 

  • Semagn K, Yoseph B, Marilyn LW, Amsal T, Stephen M, Barbara M, Sehabiague P, Prasanna BM (2013) Meta-analyses of QTL for grain yield and anthesis silking interval in 18 maize populations evaluated under water-stressed and well-watered environments. BMC Genomics 14:313

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma SB, McDonald D (1990) Global status of nematode problems of groundnut, pigeonpea, chickpea, sorghum and pearl millet and suggestion for future work. Crop Prot 9:453–458

    Article  Google Scholar 

  • Sharma S, Upadhyaya HD, Varshney RK, Gowda CLL (2013) Pre-breeding for diversification of primary gene pool and genetic enhancement of grain legumes. Front Plant Sci 4:309

    PubMed  PubMed Central  Google Scholar 

  • Shilpa K, Sunkad G, Kurella S, Marri S, Padmashree K, Jadhav DR, Sahrawat KL, Mallikarjuna N (2013) Biochemical composition and disease resistance in newly synthesized amphidiploid and autotetraploid peanuts. Food Nutr Sci 4(2):169–176

    Article  Google Scholar 

  • Simpson CE, Starr JL (2001) Registration of ‘COAN’. Peanut Sci 41:918–918

    Google Scholar 

  • Simpson CE, Starr JL, Nelson SC, Woodard KE, Smith OD (1993) Registration of TxAG-6 and TxAG-7 peanut germplasm. Crop Sci 33:1418

    Article  Google Scholar 

  • Simpson CE, Starr JL, Church GT, Burrow MD, Paterson AH (2003) Registration of NemaTAM peanut. Crop Sci 43:1561

    Article  Google Scholar 

  • Singh AK, Dwivedi SL, Pande S, Moss JP, Nigam SN, Sastri DC (2003) Registration of rust and late leaf spot resistant peanut germplasm lines. Crop Sci 43:440–441

    Article  Google Scholar 

  • Stevenson PC, Blaney WM, Simmonds MJS, Wightman JA (1993a) The identification and characterization of resistance in wild species of Arachis to Spodoptera litura (Lepidoptera: Noctuidae). Bull Entomol Res 83:421–429

    Article  Google Scholar 

  • Stevenson PC, Anderson JC, Blaney WM, Simmonds MSJ (1993b) Developmental inhibition of Spodoptera litura (Fab.) larvae by a novel caffeoylquinic acid from the wild groundnut Arachis paraguariensis (Chod et Hassl.). J Chem Ecol 19:2917–2933

    Article  PubMed  CAS  Google Scholar 

  • Subrahmanyam P, Ghanekar AM, Nolt BL, Reddy DVR, McDonald D (1985a) Resistance to groundnut diseases in wild Arachis species. ICRISAT (International Crops Research Institute for the Semi-Arid Tropics) In: Moss JP, Feakin SD (eds) Proceedings of an international workshop on cytogenetics of Arachis. ICRISAT Center, Patancheru, India, 31 Oct–2 Nov 1983, pp 49–55

    Google Scholar 

  • Subrahmanyam P, Moss JP, McDonald D, Rao PVS, Rao VR (1985b) Resistance to leaf spot caused by Cercosporidium personatum in wild Arachis species. Disease 69:951–954

    Article  Google Scholar 

  • Valls JFM, Simpson CE (2005) New species of Arachis L. (Leguminosae) from Brazil, Paraguay and Bolivia. Bonplandia 14:35–64

    Google Scholar 

  • Varshney RK, Bertioli DJ, Moretzsohn MC, Vadez V, Krishnamurthy L, Aruna R, Nigam SN, Moss BJ, Seetha K, Ravi K, Knapp HSJ, Hoisington DA (2009) The first SSR- based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet 118:729–739

    Article  PubMed  CAS  Google Scholar 

  • Vavilov NI (1951) Phytogeographic basis of plant breeding. The origin, variation, immunity and breeding of cultivated plants. Chron Bot 13:1–366

    Google Scholar 

  • Whitley ML, Isleib TG, Hendrix KW, Sanders TH, Dean LO (2011) Environmental and varietal effects on niacin content of raw and roasted peanuts. Peanut Sci 38:20–25

    Article  Google Scholar 

  • Wightman JA, Amin PW (1988) Groundnut pests and their control in semi arid tropics. Trop Pest Manag 34:218–226

    Article  Google Scholar 

  • Xue HQ, Isleib TG, Stalker HT, Payne GA, Obrian G (2005) Evaluation of Arachis species and interspecific tetraploid lines for resistance to aflatoxin production by Aspergillus flavus. Peanut Sci 31:134–141

    Article  Google Scholar 

  • Yu J, Ahmedna M, Goktepe I (2005) Effects of processing methods and extraction solvents on concentration and antioxidant activity of peanut skin phenolics. Food Chem 90:199–206

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalini Mallikarjuna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Mallikarjuna, N., Shilpa, K., Pandey, M., Janila, P., Varshney, R.K. (2014). Groundnut. In: Singh, M., Bisht, I., Dutta, M. (eds) Broadening the Genetic Base of Grain Legumes. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2023-7_8

Download citation

Publish with us

Policies and ethics