Skip to main content
Log in

Complete chloroplast genome sequence of rapeseed (Brassica napus L.) and its evolutionary implications

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The complete nucleotide sequence of the rapeseed (Brassica napus L.) chloroplast genome (cpDNA) was determined. The 152,860 bp cpDNA contained a pair of 26,035 bp inverted repeat regions (IR), which are separated by small and large single copy regions (SSC and LSC) of 83,030 and 17,760 bp, respectively. The major portion (56.4%) of the B. napus cpDNA consists of gene coding regions, while intergenic spacers make up 43.6% of the complete genome. The average AT content of the B. napus cpDNA is 63.7% and for the LSC, SSC and IR region is 65.9, 70.8 and 57.7%, respectively. Fifteen genes contained one intron, while three genes had two introns. In total, 86 simple sequence repeats were identified. The detailed comparison of the B. napus with one of its putative parents, B. rapa L. cpDNA indicated that the two species were highly similar. The entire gene pool and relative positions of 113 individual genes were identical to those of B. rapa cpDNA. The sequence divergence analysis of B. napus and B. rapa showed only 0.133% in the coding regions, 0.275% in the intron regions, and 0.348% in the intergenic spacer regions. The phylogenies based on 61 protein coding genes from 48 cpDNA sequences provided strong support for monophyly of many major classes of angiosperms and provided support that Amborella could be a sister to all other angiosperms. Our analysis also supported that B. napus is the closest species to B. rapa and B. rapa could be the mathernal parent of B. napus cv. zy036.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amar S, Ecke W, Becker HC, Möllers C (2008) QTL for phytosterol and sinapate ester content in Brassica napus L. collocate with the two erucic acid genes. Theor Appl Genet 116:1051–1061

    Article  PubMed  CAS  Google Scholar 

  • Asano T, Tsudzuki T, Takahashi S, Shimada H, Kadowaki K (2004) Complete nucleotide sequence of the sugarcane (Saccharum offcinarum) chloroplast genome: a comparative analysis of four monocot chloroplast genomes. DNA Res 11:93–99

    Article  PubMed  CAS  Google Scholar 

  • Bausher MG, Singh ND, Lee SB, Jansen RK, Daniell H (2006) The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var. ‘Ridge Pineapple’ organization and phylogenetic relationships to other angiosperms. BMC Plant Biol 6:21

    Article  PubMed  Google Scholar 

  • Cai Z, Penaflor C, Kuehl JV, Leebens-Mack J, Carlson JE, dePamphilis CW, Boore JL, Jansen RK (2006) Complete plastid genome sequences of Drimys, Liriodendron, and Piper: implications for the phylogenetic relationships of magnoliids. BMC Evol Biol 6:77

    Article  PubMed  Google Scholar 

  • Cato SA, Richardson TE (1996) Inter- and intra-specific polymorphism at chloroplast SSR loci and the inheritance of plastids in Pinus radiate D. Don. Theor Appl Genet 93:587–592

    Article  CAS  Google Scholar 

  • Chang CC, Lin HC, Lin IP, Chow TY, Chen HH, Chen WH, Cheng CH, Lin CY, Liu SM, Chang CC, Chaw SM (2006) The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol Biol Evol 23:279–291

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Li M, Shi J, Fu D, Qian W, Zou J, Zhang C, Meng J (2008) Gene expression profiles associated with intersubgenomic heterosis in Brassica napus. Theor Appl Genet 117:1031–1040

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Lee SB, Grevich J, Saski C, Guda C, Tomkins J, Jansen RK (2006) Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes. Theor Appl Genet 112:1503–1518

    Article  PubMed  CAS  Google Scholar 

  • Flannery ML, Mitchell FJG, Coyne S, Kavanagh TA, Burke JI, Salamin N, Dowding P, Hodkinson TR (2006) Plastid genome characterisation in Brassica and Brassicaceae using a new set of nine SSRs. Theor Appl Genet 113:1221–1231

    Article  PubMed  CAS  Google Scholar 

  • Goremykin VV, Hirsch-Ernst KI, Wolfl S, Hellwig FH (2003a) Analysis of the Amborella trichopoda chloroplast genome sequence suggests that Amborella is not a basal angiosperm. Mol Biol Evol 20:1499–1505

    Article  PubMed  CAS  Google Scholar 

  • Goremykin VV, Hirsch-Ernst KI, Wolfl S, Hellwig FH (2003b) The chloroplast genome of the “basal” angiosperm Calycanthus fertilis-structural and phylogenetic analyses. Plant Syst Evol 242:119–135

    Article  CAS  Google Scholar 

  • Goremykin VV, Hirsch-Ernst KI, Wolfl S, Hellwig FH (2004) The chloroplast genome of Nymphaea alba: wholegenome analyses and the problem of identifying the most basal angiosperm. Mol Biol Evol 21:1445–1454

    Article  PubMed  CAS  Google Scholar 

  • Goremykin VV, Holland B, Hirsch-Ernst KI, Hellwiq FH (2005) Analysis of Acorus calamus chloroplast genome and its phylogenetic implications. Mol Biol Evol 22:1813–1822

    Article  PubMed  CAS  Google Scholar 

  • Hajduch M, Casteel JE, Hurrelmeyer KE, Song Z, Agrawal GK, Thelen JJ (2006) Proteomic analysis of seed filling in Brassica napus developmental characterization of metabolic isozymes using high-resolution two-dimensional gel ecectrophoresis. Plant Physiol 141:32–46

    Article  PubMed  CAS  Google Scholar 

  • Halldén C, Gertsson B, Säll T, Lind-Halldén C (1993) Characterization of organellar DNA in alloplasmic lines of Brassica napus L. Plant Breed 111:185–191

    Article  Google Scholar 

  • Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Shun CR, Meng BY, Li YQ, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217:185–194

    Article  PubMed  CAS  Google Scholar 

  • Hu ZY, Wang XF, Zhan GM, Liu GH, Hua W, Wang HZ (2009) Unusually large oilbodies are highly correlated with lower oil content in Brassica napus. Plant Cell Rep 28:541–549

    Article  PubMed  CAS  Google Scholar 

  • Hupfer H, Swaitek M, Hornung S, Herrmann RG, Maier RM, Chiu WL, Sears B (2000) Complete nucleotide sequence of the Oenothera elata plastid chromosome, representing plastome I of the five distinguishable euoenthera plastomes. Mol Gen Genet 263:581–585

    PubMed  CAS  Google Scholar 

  • Jansen RK, Raubeson LA, Boore JL, dePamphilis CW, Chumley TW, Haberle RC, Wyman SK, Alverson A, Peery R, Herman SJ, Fourcade HM, Kuehl JV, McNeal JR, Leebens-Mack J, Cui L (2005) Methods for obtaining and analyzing chloroplast genome sequences. In: Zimmer EA, Roalson E (eds) In Molecular Evolution: Producing the Biochemical Data, Part B. Volume 395 of the Methods in Enzymology series. Elsevier, Burlington, pp 348–384

    Google Scholar 

  • Jansen RK, Kaittanis C, Saski C, Lee SB, Tompkins J, Alverson AJ, Daniell H (2006) Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evol Biol 6:32

    Article  PubMed  Google Scholar 

  • Kahlau S, Aspinall S, Gray JC, Bock R (2006) Sequence of the tomato chloroplast DNA and evolutionary comparison of Solanaceous plastid genomes. J Mol Evol 63:194–207

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Kaneko T, Sato S, Nakamura Y, Tabata S (2000) Complete structure of the chloroplast genome of a legume, Lotus japonicus. DNA Res 7:323–330

    Article  PubMed  CAS  Google Scholar 

  • Kemble RJ (1987) A rapid single leaf, nucleic acid assay for determining the cytoplasmic organelle complement of rapeseed and related Brassica species. Theor Appl Genet 73:364–370

    Article  CAS  Google Scholar 

  • Kim KJ, Lee HL (2004) Complete chloroplast genome sequence from Korean Ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res 11:247–261

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Jung JD, Lee J, Park H, Oh K, Jeong W, Choi D, Liu JR, Cho KY (2006) Complete sequence and organization of the cucumber (Cucumis sativus L. cv. Baekmibaekdadagi) chloroplast genome. Plant Cell Rep 25:334–340

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Park C, Kim K (2009) Complete chloroplast DNA sequence from a Korean endemic genus, Megaleranthis saniculifolia, and its evolutionary implications. Mol Cells 27:365–381

    Article  PubMed  CAS  Google Scholar 

  • Lee SB, Kaittanis C, Jansen RK, Hostetler JB, Tallon LJ, Town CD, Daniell H (2006) The complete chloroplast genome sequence of Gossypium hirsutum: organization and phylogenetic relationships to other angiosperms. BMC Genomics 7:61

    Article  PubMed  Google Scholar 

  • Leebens-Mack J, Raubeson LA, Cui L, Kuehl J, Fourcade M, Chumley T, Boore JL, Jansen RK, dePamphilis CW (2005) Identifying the basal angiosperms in chloroplast genome phylogenies: sampling one’s way out of the Felsenstein zone. Mol Biol Evol 22:1948–1963

    Article  PubMed  CAS  Google Scholar 

  • Maier RM, Neckermann K, Lgloi GL, Kossel H (1995) Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251:614–628

    Article  PubMed  CAS  Google Scholar 

  • Mardanov AV, Ravin NV, Kuznetsov BB, Samigullin TH, Antonov AS, Kolganova TV, Skyabin KG (2008) Complete sequence of the duckweed (Lemna minor) chloroplast genome: structural organization and phylogenetic relationships to other angiosperms. J Mol Evol 66:555–564

    Article  PubMed  CAS  Google Scholar 

  • Mittelbach M, Gangl S (2001) Long storage stability of biodiesel made from rapeseed and used frying oil. J Am Oil Chem Soc 78:573–577

    Article  CAS  Google Scholar 

  • Ogihara Y, Isono K, Kojima T, Endo A, Hanaoka M, Shiina T, Terachi T, Utsugi S, Murata M, Mori N, Takumi S, Ikeo K, Gojobori T, Murai R, Murai K, Matsuoka Y, Ohnishi U, Tajiri H, Tsunewaki K (2000) Chinese spring wheat (Triticum aestivum L.) chloroplast genome: complete sequence and contig clones. Plant Mol Biol Rep 18:243–253

    Article  CAS  Google Scholar 

  • Okumura S, Sawada M, Park YW, Hayashi T, Shimamura M, Takase H, Tomizawa K (2006) Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Res 15:637–647

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD (1991) Plastid chromosomes: structure and evolution. In: Vasil IK, Bogorad L (eds) In cell culture and somatic cell genetics in plants, the molecular biology of plastids, vol 7A. Academic Press, San Diego, pp 5–53

    Google Scholar 

  • Palmer JD, Shields CR, Cohen DB, Orton TJ (1983) Chloroplast DNA evolution and the origin of amphidiploid Brassica species. Theor Genet 65:181–189

    Article  CAS  Google Scholar 

  • Plader W, Yukawa Y, Suqiura M, Malepszy S (2007) The complete structure of the cucumber (Cucumis sativus L.) chloroplast genome: its composition and comparative analysis. Cell Mol Biol Lett 12:584–594

    Article  PubMed  CAS  Google Scholar 

  • Powell W, Morgante M, McDevitt R, Vendramin GG, Rafalski JA (1995) Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines. Proc Natl Acad Sci USA 92:7759–7763

    Article  PubMed  CAS  Google Scholar 

  • Raubeson LA, Jansen RK (2005) Chloroplast genomes of plants. In: Henry R (ed) In diversity and evolution of plants-genotypic variation in higher plants. CABI Publishing, Oxfordshire, pp 45–68

    Chapter  Google Scholar 

  • Ravi V, Khurana JP, Tyagi AK, Khurana P (2006) The chloroplast genome of mulberry: complete nucleotide sequence, gene organization and comparative analysis. Tree Genet Genomes 3:49–59

    Article  Google Scholar 

  • Samson N, Bausher MG, Lee S, Jansen RK, Daniell H (2007) The complete nucleotide sequence of the coffee (Coffea arabica L.) chloroplast genome: organization and implications for biotechnology and phylogenetic relationships amongst angiosperms. Plant Biotechnol J 5:339–353

    Article  PubMed  CAS  Google Scholar 

  • Saski C, Lee S, Fjellheim S, Guda C, Jansen RK, Luo H, Tomkins J, Rognli OA, Daniell H, Clarke JL (2007) Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. Theor Appl Genet 115:571–590

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S (1999) Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res 6:283–290

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber C, Maier RM, Alcaraz JP, Cottet A, Herrman RG, Mache R (2001) The plastid chromosome of spinach (Spinacia oleracea) complete nucleotide sequence and gene organization. Plant Mol Biol 45:307–315

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber C, Regel R, Du TG, Hupfer H, Herrmann RG, Maier RM (2002) The plastid chromosome of Atropa belladonna and its comparison with that of Nicotiana tabacum: the role of RNA editing in generating divergence in the process of plant speciation. Mol Biol Evol 19:1602–1612

    PubMed  CAS  Google Scholar 

  • Shimada H, Sugiura M (1989) Pseudogenes and short repeated sequences in the rice chloroplast genome. Curr Genet 16:293–301

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Thodoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049

    PubMed  CAS  Google Scholar 

  • Steane DA (2005) Complete nucleotide sequence of the chloroplast genome from the Tasmanian Blue Gum, Eucalyptus globulus (Myrtaceae). DNA Res 12:215–220

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0. Sinauer Associates, Sunderland

    Google Scholar 

  • Timme RE, Kuehl JV, Boore JL, Jansen RK (2007) A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats. Am J Bot 94:302–312

    Article  PubMed  CAS  Google Scholar 

  • Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M (1994) Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci USA 91:9794–9798

    Article  PubMed  CAS  Google Scholar 

  • Wakasugi T, Sugita M, Tsudzuki T, Sugiura M (2001) The genomics of land plant chloroplasts: gene content and alteration of genomic information by RNA editing. Photosyn Res 70:107–118

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Gouy M, Yang YW, Sharp P, Li WH (1989) Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci USA 86:6201–6205

    Article  PubMed  CAS  Google Scholar 

  • Wyman SK, Boore JL, Jansen RK (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255

    Article  PubMed  CAS  Google Scholar 

  • Zwickl DJ (2008) GARLI (Genetic algorithm for rapid likelihood inference), version 0.96. URL http://www.bio.utexas.edu/faculty/antisense/garli/garli.html [accessed on May 2008]

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (Grant No. 2006CB101607) and the Ministry of Agriculture Genetically modified organisms breeding major projects (2009ZX08009-018B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Zhong Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 82 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, ZY., Hua, W., Huang, SM. et al. Complete chloroplast genome sequence of rapeseed (Brassica napus L.) and its evolutionary implications. Genet Resour Crop Evol 58, 875–887 (2011). https://doi.org/10.1007/s10722-010-9626-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-010-9626-9

Keywords

Navigation