Skip to main content
Log in

Diversity analysis of Aegilops species from Morocco using RAPD markers

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The diversity of 51 representative populations of the 5 Aegilops species from Moroccan collection was analyzed using 22 RAPD primers. We investigated the associations among these 5 Aegilops species (A. geniculata Roth (UUMM), A. triuncialis L. (UUCC), A. ventricosa Tausch (DDNN), A. peregrina (Hackel) Maire et Weiller (UUMM) and A. neglecta Req. ex Bert. subsp. recta (Zhuk.) K. Hammer (UUMMNN)); some diploid species considered as their ancestors; accessions of some neighboring countries and also accessions of Triticums. A total of 650 polymorphic RAPD fragments were amplified. A dendrogram was constructed using the un-weighed pair group method arithmetic average (UPGMA) and Jaccard`s similarity coefficient. The UPGMA clustering showed a regrouping to the level species with high level of the structuration of the diversity at A. geniculata. We confirm as reported by other authors, the proximity of N genome to U genome and C genome to M genome and also the difference between the genomes M and N. Thus, the phylogeny between the species and the different genomes were retracted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

IAV:

Institute of Agronomy and Veterinary

RAPD:

Random amplified polymorphic DNA

RFLP:

Restriction fragment length polymorphism

SSR:

Simple sequence repeat

References

  • Al-Humaid A, Motawei PI (2004) Molecular characterization of some turfgrass cultivars using randomly amplified polymorphic DNA (RAPD) markers. Food Agric Environ 2(1):376–380

    CAS  Google Scholar 

  • Badaeva ED (2002) Evaluation of phylogenetic relationships between five polyploidy Aegilops L. species of the U-genome cluster by means of chromosomal analysis. Genetika 38(6):799–811

    CAS  PubMed  Google Scholar 

  • Badaeva ED, Friebe B, Gill BS (1996) Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. Genome 39:293–306

    Article  CAS  PubMed  Google Scholar 

  • Baum BR, Nevo E, Douglas A, Johnson A, Beiles A (1997) Genetic diversity in wild barley (Hordeum spontaneum C. Koch) in the Near East: a molecular analysis using random amplified polymorphic DNA (RAPD) markers. Genet Resour Crop Evol 44:147–157

    Article  Google Scholar 

  • Belkadi B, Assali N, Benlhabib O (2003) Variation of specific morphological traits and ploidy level of five Aegilops L. species in Morocco. Acta Botanica 28:47–58

    Google Scholar 

  • Benito C, Figueras AM, Gonsales-jaen MT (1987) Location of genes coding for isozyme markers on Ae. umbellulata chromosomes adds data on homoeology among Triticeae chromosomes. Theor Appl Genet 73:581–588

    Article  CAS  Google Scholar 

  • Benlhabib O, Diria G, Bouhssini M, Lhaloui S, Nachit M (2001) Collecting and evaluating Aegilops for germoplasm enhancement in Morocco. Actes IAV 21:3

    Google Scholar 

  • Boissier PE (1884) Flora Orientalis 5:2, Basel, Geneva

  • Botstein D, White R, Skolnick M, Davis R (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet 32:314–331

    CAS  PubMed  Google Scholar 

  • Bowden WL (1959) The taxonomy and nomenclature of the wheats, barleys and ryes and their wild relatives. Can J Bot 37:663 667-668, 670, 675-677

    Google Scholar 

  • Breiman A (1987) Mitochondrial DNA diversity in the genera of Triticum and Aegilops revealed by Southern blot hybridization. Theor Appl Genet 73:563–570

    Article  CAS  Google Scholar 

  • Cadwell KA, Kasarda DD (1978) Assessment of genomic and species relationships in Triticum and Aegilops by PAGE and by differential staining of seed albumins and globulins. Theor Appl Genet 52:273–280

    Article  Google Scholar 

  • Cao W, Scoles G, Hucl P, Chibbar RN (1999) The use of RAPD analysis to classify Triticum accessions. Theor Appl Genet 98:602–607

    Article  CAS  Google Scholar 

  • Castagna R, Maga G, Perenzin M, Heun M, Salamini F (1994) RFLP-based genetic relationships of Einkorn wheats. Theor Appl Genet 88:818–823

    Article  CAS  Google Scholar 

  • Castagna R, Gnocchi S, Perenzin M, Heum M (1997) Genetic variability of the wild wheat Triticum urartu revealed by RFLP and RAPD markers. Theor Appl Genet 94:424–430

    Article  CAS  Google Scholar 

  • Castilho A, Heslop-Harrison JS (1995) Physical mapping of 5S and 18S–25S rDNA repetitive DNA sequences in Aegilops umbellulata. Genome 38:91–96

    CAS  PubMed  Google Scholar 

  • Chennaveeraiah MS (1960) Karyomorphologic and cytotaxonomic studies in Aegilops. Acta hortigotoburgensis 23:85–178

    Google Scholar 

  • Dawson IK, Chalmers KJ, Waugh R, Powell W (1993) Detection and analysis of genetic variation in Hordeum spontaneum populations from Israel using RAPD markers. Mol Ecol 2:151–159

    Article  CAS  PubMed  Google Scholar 

  • De Bustos A, Soler C, Jouve N (1999) Analysis by PCR-based markers using designed primers to study relationships between species of Hordeum (Poaceae). Genome 42:129–138

    Article  Google Scholar 

  • Devos KM, Gale MD (1992) The use of random amplified polymorphic DNA markers in wheat. Theor Appl Genet 84:567–572

    Article  Google Scholar 

  • Dewey DR (1984) The genome system of classification as a guide to hybridization with the perennial Triticeae. In: Gustafson JP (ed) Gene manipulation in plant improvement. Plenum publ. Crop., New York, pp 209–279

    Google Scholar 

  • Dos Santos JB, Nienhuis J, Skroch P, Tivang J, Slocum MK (1994) Comparison of RAPD and RFLP genetic markers in determining genetic similarity among Brassica oleracea L. genotypes. Theor Appl Genet 87:909–915

    CAS  Google Scholar 

  • Eig A (1929) Monographische-Kritische Übersicht der Gattung Aegilops, Feddes Repert. Reg Veget Beih Band Lv Berlin 55:1–228

    Google Scholar 

  • Fahima T, Sun GL, Beharav A, Krugman T, Beiles A, Nevo E (1999) RAPD polymorphism of wild emmer wheat populations, Triticum dicoccoides, in Israel. Theor Appl Genet 98:434–447

    Article  CAS  Google Scholar 

  • Feldman M, Sears ER (1981) The wild gene resources of wheat. Sci Am (New York) 244(1):98–109

    Google Scholar 

  • Felsenstein J (1993) PHYLIP: PHYLogenetic Inference Package version 3.5c. Page web consultée en Décembre 2002, http://evolution.genetics.washington.edu/phylip/software.html

  • Friebe B, Mukai Y, Gill BS (1992) C-Banding polymorphisms in several accessions of Triticum tauschii (Aegilops squarrosa). Genome 35:192–199

    Google Scholar 

  • Goriunova SV, Kochieva EZ, Chikida NN, Pukhal’skii VA (2004) Phylogenetic relationships and intraspecific variation of D-genome Aegilops L. as revealed by RAPD analysis. Genetika 400(5):642–651

    Google Scholar 

  • Hammer K (1980) Zur Taxonomie und Nomenklatur der Gattung Aegilops L. Feddes Repert 91:225–258

    Article  Google Scholar 

  • Hart GE, Tuleen NA (1983) Characterizing and selecting alien genetic material of wheat alien species hybrids by analyses of isozyme variation. In: Sakamoto S (ed) Proceedings of the 6th international wheat genetics symposium, held at Kyoto, 28 November–3 December 1983. Plant Germ-plasm Institute, Kyoto University, Kyoto, pp 377–385

  • Jaaska V (1987) Isoenzyme contribution to the systematics and phylogeny of the Triticeae crops and grasses. In: The plant cover of the Estonian SSR flora, vegetation and ecology. Tallinn, Valgus, pp 133–159

  • Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci 44:223–270

    Google Scholar 

  • Jiang J, Gill BS (1994) New 18S–26S ribosomal RNA gene loci: chromosomal landmarks for the evolution of polyploidy wheats. Chromosoma 103:179–185

    Article  CAS  PubMed  Google Scholar 

  • Joshi CP, Nguyen T (1993) RAPD (random amplified polymorphic DNA) analysis based intervarietal genetic relationships among hexaploid wheats. Plant Sci 93:95–103

    Article  CAS  Google Scholar 

  • Kazutoshi O, Kaoru E, Bayarsukh N, Hisashi Y (1998) Genetic diversity of Central Asian and north Caucasian Aegilops species as revealed by RAPD markers. Genet Resour Crop Evol 45(4):389–394

    Article  Google Scholar 

  • Khalighi M, Arzani A, Poursiahbidi MA (2008) Assessment of genetic diversity in Triticum spp. and Aegilops spp. using AFLP markers. Afr J Biotechnol 7(5):546–552

    CAS  Google Scholar 

  • Kihara H (1949) Genomanalyse bei Triticum und Aegilops IX. Systematischer Aufbau der Gattung Aegilops auf genomanalytischer Grundlage. Cytologia 14:135–144

    Google Scholar 

  • Kimber G, Feldman M (1987) Wild wheat, an introduction, special Report 353. University of Missouri, USA

    Google Scholar 

  • Kyoko Y, Taihachi K (2005) Intra- and interspecific phylogenetic relationships among diploid Triticum-Aegilops species (Poaceae) based on base-pair substitutions, indels, and microsatellites in chloroplast noncoding sequences. Am J Bot 92:1887–1898

    Article  Google Scholar 

  • Lagudah ES, Clarke BS, Appels R (1989) Phylogenetic relationships of Triticum tauschii, the D-genome donor to hexaploid wheat. 4. Variation and chromosomal location of 5S DNA. Genome 32:1017–1025

    CAS  PubMed  Google Scholar 

  • Lilienfeld FA (1951) Concluding review. In: Kihara H (ed) Genome analysis in Triticum and Aegilops. X. Cytologia, vol 16, no 2, pp 115

  • Loarce Y, Gallego R, Ferrer E (1996) A comparative analysis of the genetic relationships between rye cultivars using RFLP and RAPD markers. Euphytica 88:107–115

    Article  Google Scholar 

  • Lubbers EL, Gill KS, Cox TS, Gill BS (1991) Variation of molecular markers among geographically diverse accessions of Triticum tauschii. Genome 34:354–361

    Google Scholar 

  • Miyashita NT, Mori N, Tsunewaki K (1994) Molecular variation in chloroplast DNA regions in ancestral species of wheat. Genetics 137:883–889

    CAS  PubMed  Google Scholar 

  • Monte JV, Casanova C, Soler C (1999) Genetic variation in Spanish populations of the genus Aegilops reveled by RAPD. Agronomie 19:419–427

    Article  Google Scholar 

  • Monte JV, De Nova PJ, Soler C (2001) AFLP-based analysis to study genetic variability and relationships in the Spanish species of the genus Aegilops. Hereditas 135(2–3):233–238

    CAS  PubMed  Google Scholar 

  • Morris R, Sears ER (1967) The cytogenetics of wheat and its relatives. In: Quisenberry KS, Reitz LP (eds) Wheat and wheat improvement: 20–21 (table 1) 23, 87

  • Murray M, Thompson WF (1980) Rapid isolation of high-molecular-weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed  Google Scholar 

  • Nakai Y (1979) Isozyme variation in Aegilops and Triticum. IV. The origin of common wheat revealed from the study of esterase isozymes in synthesized hexaploid wheats. Jpn J Genet 54:175–189

    Article  Google Scholar 

  • Owuor ED, Fahima T, Beiles A, Korol A, Nevo E (1997) Population genetic response to microsite ecological stress in wild barley, Hordeum spontaneum. Mol Ecol 6:1177–1187

    Article  Google Scholar 

  • Petersen G, Seberg O, Yde M, Berthelsen K (2006) Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B and D genomes of commun wheat (Triticum aestivum). Mol Phylogenet Evol 39(1):70–82

    Article  CAS  PubMed  Google Scholar 

  • Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16:142–147

    Article  PubMed  Google Scholar 

  • Provan J, Wolters P, Caldwell KH, Powell W (2004) High resolution organellar genome analysis of Triticum and Aegilops sheds new light on cytoplasm evolution in wheat. Theor Appl Genet 108:1182–1190

    Article  CAS  PubMed  Google Scholar 

  • Puterka GJ, Black IVWC, Steiner WM, Burton RL (1993) Genetic variation and phylogenetic relationships among world-wide collections of the Russian wheat aphid, Diuraphis noxia (Mordvilko), inferred from allozyme and RAPD-PCR markers. Heredity 70:604–618

    Article  CAS  PubMed  Google Scholar 

  • Rayburn AL, Gill BS (1987) Molecular analysis of the D-genome of the Triticeae. Theor Appl Genet 73:385–388

    Article  CAS  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer length polymorphisms in barley: Mendelian inheritance, chromosome location and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto S (1982) The Middle East as a cradle for crops and weeds. In: Holzner W, Numata W (eds) Biology and ecology of weeds, Chap 9. Kluwer, Boston, pp 97–109

  • Sasanuma T, Chabane K, Endo TR, Valkoun J (2004) Characterization of genetic variation in and phylogenetic relationships among diploid Aegilops species by AFLP: incongruity of chloroplast and nuclear data. Theor Appl Genet 108:612–618

    Article  CAS  PubMed  Google Scholar 

  • Schlüter PM, Harris SA (2006) Analysis of multilocus fingerprinting data sets containing missing data. Mol Ecol Notes 6:569–572

    Article  Google Scholar 

  • Schmidt J-C, Schubert V, Blüthner WD (1993) Use of isozymes to characterize Triticum aestivumAegilops markgrafii addition lines. Biochem Physiol Pflanzen 188:385–392

    CAS  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. The principles and practice of numerical classification. W.H. Freeman and company, San Francisco

    Google Scholar 

  • Stebbins GL (1956) Taxonomy and the evolution of genera, with special reference to the family Gramineae. Evolution 10:235–247

    Article  Google Scholar 

  • Sun GL, Salomon B, Von Bothmer R (1997) Analysis of tetraploid Elymus species using wheat microsatellite markers and RAPD markers. Genome 40:806–814

    Article  CAS  PubMed  Google Scholar 

  • Takashi RE, Yamamoto M, Mukai Y (1994) Structural changes of rye chromosome IR induced by a gametocidal chromosome. Jpn J Genet 69:13–19

    Article  Google Scholar 

  • Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acid Res 17:6463–6471

    Article  CAS  PubMed  Google Scholar 

  • Tsujimoto H, Tsunewaki K (1985) Gametocidal genes in wheat and its relatives 2. Suppressor of the chromosome 3c gametocidal gene of Aegilops-Triuncialis. Can J Genet Cytol 27:178–185

    Google Scholar 

  • Tsunewaki K, Takumi S, Mori N, Achiwa T, Liu YG (1991) Origin of polyploid wheats revealed by RFLP analysis. In: Sasakuma T, Kinoshita T (eds) Nuclear and organellar genomes of wheat species. Kihara Memorial Foundation Yokohama, pp 33–39

  • Tzvelev NN (1983) Tribe 3. Triticeae Dumort. In: Fedorow AA (ed) Grasses of the Soviet Union. I. Oxonian Press, New Delhi, pp 147–181

    Google Scholar 

  • Van Slageren MW (1990) The significance of taxonomic methods in handling genetic diversity. In: Srivastava JP, Damania AB (eds) Wheat genetic resources: meeting diverse needs. Wiley, Chichester

    Google Scholar 

  • Van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Agricultural University ICARDA, Wageningen 512 pp

    Google Scholar 

  • Vieira RF, Goldsbrough P, Simon JE (2003) Genetic diversity of basil (Ocimum spp.) based on RAPD markers. J Am Soc Hort Sci 128:94–99

    CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Transkley SD (1989) Restriction fragment length polymorphism in Oryza sativa L. Genome 32:1113–1118

    CAS  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  CAS  PubMed  Google Scholar 

  • Witcombe JR (1983) A guide to the species of Aegilops L. Their taxonomy, morphology and distribution, IBPGR, Rome, Italy: i–vi, 1–74

  • Zaharieva MN, David J, This D, Monneveux P (1999) Analyse de la diversité génétique d’Aegilops geniculata Roth en Bulgarie. Cahiers Agric 8:181–188

    Google Scholar 

  • Zaharieva MN, Santoni S, David J (2001) Use of RFLP markers to study genetic diversity and to build a core-collection of the wild wheat relative Ae. geniculata Roth (=Ae. ovata L.). Genet Sel Evol 33(suppl):S269–S288

    CAS  Google Scholar 

  • Zhang Q, Saghai Maroof MA, Lu TY, Shen BZ (1992) Genetic diversity and differentiation of indica and japonica rice detected by RFLP analysis. Theor Appl Genet 83:459–495

    Google Scholar 

  • Zhukovsky PM (1928) A critical-systematical survey of the species of the genus Aegilops L. Bull Appl Bot Genet Plant Breed 18:417–609

    Google Scholar 

Download references

Acknowledgments

We are grateful to all the suppliers of seed (Table 1). We thank Mrs. F. Gabon for help with statistic analysis and Dr. Laila SBABOU with critical reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Belkadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belkadi, B., Assali, N., Filali-Maltouf, A. et al. Diversity analysis of Aegilops species from Morocco using RAPD markers. Genet Resour Crop Evol 58, 271–282 (2011). https://doi.org/10.1007/s10722-010-9570-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-010-9570-8

Keywords

Navigation