Skip to main content
Log in

Physiological, morphological, chemical and genomic diversities of different origins of thyme (Thymus vulgaris L.)

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

For the selection of donors with valuable characteristics for breeding, 39 thyme accessions were evaluated in three years according to a staggered schedule. The criteria investigated were: winter hardiness, beginning of flowering, growth height, yield of the dry herb, content of essential oil, composition of the essential oil, DNA content of cell nuclei and number of chromosomes. The most strongly varying traits between the populations were the yield of dry herb, the content of essential oil and the content of volatile phenols with coefficients of variation (CV) between CV 40% and 50%. The largest variation within a population was detected for the yield of dry herb (CV 25–46%) and the content of essential oil (CV 17–48%). The homogeneity of the populations was different. The minimal average coefficient of variation of all traits (CV 19%) was determined in the population of the cultivar ‘Varico II’ and in a population from Lithuania. The ploidy level of T. vulgaris was diploid (2n = 30).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bauer F, Luf W (2002) Antioxidative effects of herbs in meat products II – slow down in fat changes. Institute for Applied Botany, University of Veterinary Medicine, Vienna. Funktionelle Pflanzenstoffe in der Veterinärmedizin, Vienna

  • Chizzola R (2005) Variabilität im ätherischen Öl von südfranzösischen und spanischen Wildpopulationen des Thymians (Thymus vulgaris L.) und daraus erstellten Feldkulturen. Zeitschrift für Arznei- & Gewürzpflanzen 10(2):82–90

    Google Scholar 

  • Dachler M, Pelzmann H (1999) Heil- und Gewürzpflanzen - Anbau - Ernte - Aufbereitung. Österreichischer Agrarverlag. Wien

    Google Scholar 

  • Dommée B, Assouad MW, Valdeyron G (1978) Natural selection and gynodioecy in T. vulgaris L. Bot J Linn Soc 77(1):17–28

    Article  Google Scholar 

  • Elena-Rosello JA (1981) Cytotaxonomic and evolutionary studies in Thymus (Labiate); relationships of the members of section T. Jalas [Spain, includes chromosome numbers]. Anales – Instituto Botanico AJ Cavarilles 38(1):51–59

    Google Scholar 

  • Gigord L, Lavigne C, Shykoff JA, Atlan A (1999) Evidence for effects of restorer genes on male and female reproductive functions of hermaphrodites in the gynodioecious species T. vulgaris L. J Evol Biol 12(3):596–604

    Article  Google Scholar 

  • Granger R, Passet J (1973) T. vulgaris L. spontané de France: races chimiques et chemotaxonomie. Phytochemistry 12:1683–1691

    Article  CAS  Google Scholar 

  • Granger R, Passet J, Teulade-Arbousset G (1963) Diversité des essences de T. vulgaris L. La France et ses Parfums 6:225–230

    CAS  Google Scholar 

  • Hoven R, Zappe H, Zitterl-Eglseer K, Jugl M, Franz C (2003) Study of the effect of Bronchipret on the lung function of five Austrian saddle horses suffering recurrent airway obstruction (heaves). Veterinary 152(18):555–557

    Google Scholar 

  • Hudaib M, Speroni E, Di Pietra AM, Cavrini V (2002) GC/MS evaluation of thyme (Thymus vulgaris L.) oil composition and variations during the vegetative cycle. J Pharm Biomed Anal 29:691–700

    Article  PubMed  CAS  Google Scholar 

  • Jalas J (1948) Chromosome studies in Thymus. I. Somatic chromosome numbers with special reference to the fennoscandian forms. Hereditas 34:414–434

    Article  Google Scholar 

  • Jugl M, Hagmüller W, Zitterl-Eglseer K, Spergser J, Schilcher F, Novak J, Gabler C, Bucher A, Schuh M (2002) Thyme (Thymus vulgaris L.) as feed additive in the rearing period of piglets. 1st European symposium on bioactive secondary plant products in veterinary medicine. October 4–5, 2002, Vienna, Austria, p 21

  • Kivanc M, Akgul A (1986) Antibacterial activities of essential oils from Turkish spices and citrus. Flavour Frag J 1(4/5):175–179

    Article  Google Scholar 

  • McClintock B (1929) A method for making acetocarmine smears permanent. Stain Technol 4:53–56

    Google Scholar 

  • McGimpsey JA, Douglas MH, Van Klinik JW, Beauregard DA, Perry NB (1994) Seasonal variation in essential oil yield and composition from naturalized T. vulgaris L. in New Zealand. Flavour Frag J 9:347–352

    Article  CAS  Google Scholar 

  • Nascimento GGF, Locatelli J, Freitas PC, Silva GL (2000) Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Braz J Microbiol 21(4):247–256

    Google Scholar 

  • N.N. Thymian Thymi herba (2002) Europäisches Arzneibuch, 4. Ausgabe, 1. Nachtrag. Deutscher Apotheker Verlag, Govi, Stuttgart, Eschborn, pp 3390–3392

  • Pank F, Krüger H (2003) Sources of variability of thyme populations (Thymus vulgaris L.) and conclusions for breeding. Zeitschrift für Arznei- & Gewürzpflanzen 8:117–124

    Google Scholar 

  • Pank F, Pfefferkorn A (2005) Präzision und Treffgenauigkeit von Ätherischöl-Gehaltsbestimmungen mit einer modifizierten Destillations-Apparatur für die Arznei- und Gewürzpflanzenzüchtung. Zeitschrift für Arznei- & Gewürzpflanzen 3:146–150

    Google Scholar 

  • Passet J (1971) Thymus vulgaris L.: Chémotaxonomie et biogenèse monoterpénique. Ph.D. Thesis, Université de Montpellier, Montepellier

  • Rasch D (1983) Einführung in die Biostatistik. VEB Deutscher Landwirtschaftsverlag Berlin, p 52

    Google Scholar 

  • Rey C (1995) Comparaison du semis direct et du plant motté pour la mise en place de la sauge officinale (Salvia officinalis L.). Revue suisse Vitic. Arboric. Hortic. 27:375–381

    Google Scholar 

  • Smith-Palmer A, Stewart J, Fyfe L (1998) Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett Appl Microbiol 26:118–122

    Article  PubMed  CAS  Google Scholar 

  • Stahl-Biskup E (2002) Thyme: the genus Thymus. Hamburg. Taylor & Francis, London, UK

    Google Scholar 

  • Thompson JD (2002) Population structure and the spatial dynamics of genetic polymorphism in thyme. In: Stahl-Biskup E, Sáez F (eds) Thyme the genus Thymus. Medicinal and aromatic plants—industrial profiles, vol 24. Taylor & Francis, New York, pp 44–74

    Google Scholar 

  • Venskutonis PR (1997) Effect of drying on the volatile constituents of thyme (Thymus vulgaris L.) and sage (Salvia officinalis L.). Food Chem 59(2):219–227

    Article  CAS  Google Scholar 

  • Venskutonis R, Poll L, Larsen M (1996) Influence of drying and irradiation on the composition of volatile compounds of thyme (Thymus vulgaris L.). Flavour Frag J 11(2):123–128

    Article  CAS  Google Scholar 

  • Vernet P, Gouyon PH, Valdeyron G (1986) Genetic control of the oil content in Thymus vulgaris L.: a case of polymorphism in a biosynthetic chain. Genetica 69(3):227–231

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Federal Ministry of Education and Research and Dr. Junghanns GmbH for the financing of the project, Dr. K. Pistrick (Institute of Plant Genetics and Crop Plant Research, Gatersleben) for assistance in taxonomical assignment and all institutes involved for the supply of the thyme populations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Pank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mewes, S., Krüger, H. & Pank, F. Physiological, morphological, chemical and genomic diversities of different origins of thyme (Thymus vulgaris L.). Genet Resour Crop Evol 55, 1303–1311 (2008). https://doi.org/10.1007/s10722-008-9329-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-008-9329-7

Keywords

Navigation