Skip to main content
Log in

On the origin of artichoke and cardoon from the Cynara gene pool as revealed by rDNA sequence variation

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The evolutionary history of artichoke and cultivated cardoon and their relationships to wild allies of the genus Cynara are not fully understood yet. To try resolve the evolutionary patterns leading to the domestication of these two crops, a study of molecular evolution was undertaken. The species C. cardunculus, including artichoke, cultivated and wild cardoon, together with four wild Cynara species were taken into consideration. Internal (ITS) and external (ETS) rDNA transcribed spacers were used as markers of nuclear genome, the psbA-trnH spacer as a marker of chloroplast genome. Sequences were analysed using phylogenetic analysis packages. Molecular data indicate that the whole genus is quite recent and that the domestication of artichoke and cultivated cardoon, crops diverging for reproduction system and use, are independent events which diverge in time and space. As for wild Cynara species, an evolutionary pattern consistent with their present geographical distribution was hypothesized in relation to the climatic changes occurring in the Mediterranean during the last 20 millennia: C. humilis and C. cornigera appeared to have differentiated first, C. syriaca and C. baetica were differentiated in a second period, while C. cardunculus showed to be the most recent and plastic species. The high plasticity of C. cardunculus has not only allowed its nowadays wide distribution, but has also given the potential for domestication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aïnouche AK, Bayer R (1999) Phylogenetic relationships in Lupinus (Fabaceae: Papilionideae) based on internal transcribed spacer sequences (ITS) of nuclear ribosomal DNA. Am J Bot 86:590–607

    Article  PubMed  Google Scholar 

  • Arnheim N, Krystal M, Schmickel R, Wilson G, Ryder O, Zimmer E (1980) Molecular evidence for genetic exchanges among ribosomal genes on non-homologous chromosomes in man and apes. Proc Natl Acad Sci USA 77:7323–7327

    Article  PubMed  CAS  Google Scholar 

  • Baldwin BG (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Mol Phylog Evol 1:3–16

    Article  CAS  Google Scholar 

  • Baldwin BG, Markos S (1998) Phylogenetic utility of the external transcribed spacer (ETS) of 18S–26S rDNA: congruence of ETS and ITS trees of Calycadenia (Compositae). Mol Phylog Evol 10:449–463

    Article  CAS  Google Scholar 

  • Basnizki J, Zohary D (1994) Breeding of seed-planted artichoke. Plant Breed Rev 12:253–269

    Google Scholar 

  • Bianco VV (1990) Carciofo (Cynara scolymus L.). In: Bianco VV, Pimpini F (eds) Orticoltura (in Italian). Patron, Bologna, Italy, pp 209–251

    Google Scholar 

  • Birky CW Jr (1996) Heterozygosity, heteromorphy, and phylogenetic trees in asexual eukaryotes. Genetics 144:427–437

    PubMed  Google Scholar 

  • Bremer K (1994) Asteraceae – cladistics and classification. Timber Press, Portland, Oregon, USA

    Google Scholar 

  • Cheddadi R, Yu G, Guiot J, Harrison SP, Prentice IC (1997) The climate of Europe 6000 years ago. Climate Dyn 13:1–9

    Article  Google Scholar 

  • Cheddadi R, Lamb H, Guiot J, van der Kaars S (1998) Reconstruction of the Holocene climatic events using a pollen record from Tigalmamine lake, Morocco: relationships to global climate change. Climate Dyn 14:883–890

    Article  Google Scholar 

  • Davis BA, Brewer S, Stevenson AC, Guiot J (2003) The temperature of Europe during the Holocene reconstructed from pollen data. Quart Sci Rev 22:1701–1716

    Article  Google Scholar 

  • De Candolle A (1890) Origin of cultivated plants. Appleton and Company, New York, pp 233–236

    Google Scholar 

  • Dellacecca V (1990) Cardo (Cynara cardunculus L.). In: Bianco VV, Pimpini F (eds) Orticoltura (in Italian). Patron, Bologna, Italy, pp 252–258

    Google Scholar 

  • Farris JS, Kälersjö M, Kluge AG, Bult C (1994) Testing significance of incongruence. Cladistics 10:315–319

    Article  Google Scholar 

  • Franco J (1976) Cynara L. In: Flora Europaea. Cambridge University Press, Cambridge, UK, (4), p 248

  • Foury C (1989) Ressources génétiques et diversification de l’artichaut (Cynara scolymus L.). Acta Hortic 242:155–166

    Google Scholar 

  • Garcia-Jacas N, Susanna A, Garnatje T, Vilatersana R (2002) Tribal and subtribal delimitation and phylogeny of the Cardueae (Asteraceae): a combined nuclear and chloroplast DNA analysis. Mol Phylog Evol 22:51–64

    Article  CAS  Google Scholar 

  • Häffner E (2000) On the phylogeny of the subtribe Carduinae (Cardueae, Compositae). Englera 21:1–209

    Google Scholar 

  • Hammer K (1984) Das Domestikationssyndrom (German, English summary). Kulturpflanze 32:11–34

    Article  Google Scholar 

  • Hamilton MB (1999) Four primers for the amplification of chloroplast intergenic regions with intraspecific variation. Mol Ecol 8:521–523

    PubMed  CAS  Google Scholar 

  • Holderegger R, Abbott RJ (2003) Phylogeography of the Arctic-Alpine Saxifraga oppositifolia (Saxifragaceae) and some related taxa based on cpDNA and its sequence variation. Am J Bot 90:931–936

    CAS  Google Scholar 

  • Kelch DG, Baldwin BG (2003) Phylogeny and ecological radiation of New World thistles (Cirsium, Cardueae – Compositae) based on ITS and ETS rDNA sequence data. Mol Ecol 12:141–151

    Article  PubMed  CAS  Google Scholar 

  • Kim SC, Crawford DJ, Jansen RK, Santos-Guerra A (1999) The use of a non-coding region of chloroplast DNA in phylogenetic studies of the subtribe Sonchinae (Asteraceae: Lactuceae). Plant Syst Evol 215:85–99

    Article  Google Scholar 

  • Kollipara KP, Singh RJ, Hymowitz T (1997) Phylogenetic and genomic relationships in the genus Glycine Willd. Based on sequences from the ITS region of nuclear rDNA. Genome 40:57–68

    PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Maggini F, Tucci GF, Gelati MT (1988) Ribosomal RNA genes in species of the Cynareae tribe (Compositae). II. Protoplasma 144:125–131

    Article  CAS  Google Scholar 

  • Markos S, Baldwin BG (2002) Structure, molecular evolution, and phylogenetic utility of the 5’ region of the external transcribed spacer of 18S-26S rDNA in Lessingia (Compositae, Astereae). Mol Phylog Evol 23:214–228

    Article  CAS  Google Scholar 

  • Montelucci G (1962) Un’escursione a Montetosto, presso Cerveteri. Ann Bot – Roma 27:323–330 (in Italian)

    Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Pignone D, Sonnante G (2004) Wild artichokes of south Italy: did the story begin here? Genet Resour Crop Evol 51:577–580

    Article  Google Scholar 

  • Robba L, Carine MA, Russell SJ, Raimondo FM (2005) The monophyly and evolution of Cynara L. (Asteraceae) sensu lato: evidence from the Internal Transcribed Spacer region of nrDNA. Plant Syst Evol 253:53–64

    Article  CAS  Google Scholar 

  • Robbins WW, Bellue MK, Ball WS (1970) Weeds of California. Department of Agriculture, California, p 547

  • Rottenberg A, Zohary D (1996) The wild ancestry of the cultivated artichoke. Genet Resour Crop Evol 43:53–58

    Article  Google Scholar 

  • Rottenberg A, Zohary D, Nevo E (1996) Isozyme relationships between cultivated artichoke and the wild relatives. Genet Resour Crop Evol 43:59–62

    Article  Google Scholar 

  • Schaal BA, Learn GH Jr (1988) Ribosomal DNA variation within and among plant populations. Ann Miss Bot Garden 75:1207–1216

    Article  Google Scholar 

  • Small RL, Cronn RC, Wendel JF (2004) Use of nuclear genes for phylogeny reconstruction in plants. Aust Syst Bot 17:145–170

    Article  CAS  Google Scholar 

  • Sonnante G, De Paolis A, Lattanzio V, Perrino P (2002) Genetic variation in wild and cultivated artichoke revealed by RAPD markers. Genet Resour Crop Evol 49:247–252

    Article  Google Scholar 

  • Sonnante G, Galasso I, Pignone D (2003) ITS sequence analysis and phylogenetic inference in the genus Lens Mill. Ann Bot 91:49–54

    Article  PubMed  CAS  Google Scholar 

  • Sonnante G, De Paolis A, Pignone D (2004) Relationships among artichoke cultivars and some related wild taxa based on AFLP markers. Plant Genet Resour 1:125–133

    Article  Google Scholar 

  • Susanna A, Garcia-Jacas N, Soltis DE, Soltis PS (1995) Phylogenetic relationships in tribe Cardueae (Asteraceae) based on ITS sequences. Am J Bot 82:1056–1068

    Article  Google Scholar 

  • Swofford DL (2000) PAUP*. Phylogenetic analysis using parsimony (*and other methods) version 4. Sinauer Associates, Sunderland, Massachusetts, USA

    Google Scholar 

  • Tucci GF, Maggini F (1986) Ribosomal RNA genes in species of the Cynareae tribe (Compositae). I. Protoplasma 132:76–84

    Article  CAS  Google Scholar 

  • Wiklund A (1992) The genus Cynara L. (Asteraceae-Cardueae). Bot J Linn Soc 109:75–123

    Google Scholar 

  • Yuan YM, Küpfer P (1995) Molecular phylogenetics of the subtribe Gentianinae (Gentianaceae) inferred from the sequences of the internal transcribed spacers (ITS) of nuclear ribosomal DNA. Plant Syst Evol 196:207–226

    Article  CAS  Google Scholar 

  • Zohary D, Basnizki J (1975) The cultivated artichoke Cynara scolymus. Its probable wild ancestors. Econ Bot 29:233–235

    Google Scholar 

Download references

Acknowledgements

This research was partially funded by MIUR – Legge 449/97, Project SCRIGNO, and partially by CRA-MiPAF, Project ‘Implementazione Nazionale del Trattato Internazionale FAO Risorse Genetiche Vegetali’. The critical reading of the manuscript and constructive criticism of Dr. Cecilia Lanave (CNR-ITB, Bari, Italy) is acknowledged. The authors are grateful to Mr. Giuseppe Sonnante and Ms. Anita Morgese for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Sonnante.

Additional information

Dedicated to the memory of Richard Neville Lester (1937–2006) who greatly contributed to the understanding of the evolution, domestication, and genetic resources of eggplants as well as to the biosystematics and taxonomy of allied species.

IGV Publication N. 78 of the Institute of Plant Genetics, CNR

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sonnante, G., Carluccio, A.V., Vilatersana, R. et al. On the origin of artichoke and cardoon from the Cynara gene pool as revealed by rDNA sequence variation. Genet Resour Crop Evol 54, 483–495 (2007). https://doi.org/10.1007/s10722-006-9199-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-006-9199-9

Keywords

Navigation