Skip to main content
Log in

Multicomponent reaction derived small di- and tri-carbohydrate-based glycomimetics as tools for probing lectin specificity

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Lectins, carbohydrate-binding proteins, play important functions in all forms of life from bacteria and viruses to plants, animals, and humans, participating in cell–cell communication and pathogen binding. In an attempt to modify lectin functions, artificial lectin ligands were made usually as big dendrimeric or cluster multivalent glycomimetic structures. Here we synthesized a novel set of glycomimetic ligands through protection/deprotection multicomponent reactions (MCR) approach. Multivalent di-and tri-carbohydrate glycomimetics containing d-fructose, d-galactose, and d-allose moieties were prepared in 63–96% yield. MCR glycomimetics demonstrated different binding abilities for plant lectins Con A and UEA I, and human galectin-3. Information gained about the influence of molecule structure, multivalency and optical purity on the lectin binding ability can be used in lectin detection and sensitivity measurements to further facilitate understanding of carbohydrate recognition process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  1. Runnels, C.M., Lanier, K.A., Williams, J.K., Bowman, J.C., Petrov, A.S., Hud, N.V., Williams, L.D.: Folding, Assembly, and Persistence: The Essential Nature and Origins of Biopolymers. J. Mol. Evol. 86, 598–610 (2018). https://doi.org/10.1007/s00239-018-9876-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Varki, A.: Biological roles of glycans. Glycobiology. 27, 3–49 (2017). https://doi.org/10.1093/glycob/cww086

    Article  CAS  PubMed  Google Scholar 

  3. Palaniappan, K.K., Bertozzi, C.R.: Chemical Glycoproteomics. Chem. Rev. 116, 14277–14306 (2016). https://doi.org/10.1021/acs.chemrev.6b00023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gentili, M., Francesconi, O.: Carbohydrate-Based Drugs on the Market: Overview and Future Directions. In: Carbohydrate Chemistry: State of the Art and Challenges for Drug Development, pp. 481–499. Imperial College Press (2015)

    Chapter  Google Scholar 

  5. Astronomo, R.D., Burton, D.R.: Carbohydrate vaccines: developing sweet solutions to sticky situations? Nat. Rev. Drug. Discov. 9, 308–324 (2010). https://doi.org/10.1038/nrd3012

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, Y., Wang, F.: Carbohydrate drugs: current status and development prospect. Drug. Discov. Ther. 9, 79–87 (2015). https://doi.org/10.5582/ddt.2015.01028

    Article  CAS  PubMed  Google Scholar 

  7. Galan, M.C., Benito-Alifonso, D., Watt, G.M.: Carbohydrate chemistry in drug discovery. Org. Biomol. Chem. 9, 3598 (2011). https://doi.org/10.1039/c0ob01017k

    Article  CAS  PubMed  Google Scholar 

  8. Gabius, H., Cudic, M., Diercks, T., Kaltner, H., Kopitz, J., Mayo, K.H., Murphy, P.V., Oscarson, S., Roy, R., Schedlbauer, A., Toegel, S., Romero, A.: What is the Sugar Code? ChemBioChem. 23, e202100327 (2021). https://doi.org/10.1002/cbic.202100327

    Article  CAS  PubMed  Google Scholar 

  9. Sperandio, M., Gleissner, C.A., Ley, K.: Glycosylation in immune cell trafficking. Immunol. Rev. 230, 97–113 (2009). https://doi.org/10.1111/j.1600-065X.2009.00795.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cecioni, S., Imberty, A., Vidal, S.: Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem. Rev. 115, 525–561 (2015). https://doi.org/10.1021/cr500303t

    Article  CAS  PubMed  Google Scholar 

  11. Csizmar, C.M., Petersburg, J.R., Perry, T.J., Rozumalski, L., Hackel, B.J., Wagner, C.R.: Multivalent Ligand Binding to Cell Membrane Antigens: Defining the Interplay of Affinity, Valency, and Expression Density. J. Am. Chem. Soc. 141, 251–261 (2019). https://doi.org/10.1021/jacs.8b09198

    Article  CAS  PubMed  Google Scholar 

  12. Kiessling, L.: Synthetic multivalent ligands in the exploration of cell-surface interactions. Curr. Opin. Chem. Biol. 4, 696–703 (2000). https://doi.org/10.1016/S1367-5931(00)00153-8

    Article  CAS  PubMed  Google Scholar 

  13. Jayaraman, N., Maiti, K., Naresh, K.: Multivalent glycoliposomes and micelles to study carbohydrate–protein and carbohydrate–carbohydrate interactions. Chem. Soc. Rev. 42, 4640 (2013). https://doi.org/10.1039/c3cs00001j

    Article  CAS  PubMed  Google Scholar 

  14. Kiessling, L.L., Gestwicki, J.E., Strong, L.E.: Synthetic Multivalent Ligands as Probes of Signal Transduction. Angew. Chemie. Int. Ed. 45, 2348–2368 (2006). https://doi.org/10.1002/anie.200502794

    Article  CAS  Google Scholar 

  15. Jiménez Blanco, J.L., Ortiz Mellet, C., García Fernández, J.M.: Multivalency in heterogeneous glycoenvironments: hetero-glycoclusters, -glycopolymers and -glycoassemblies. Chem. Soc. Rev. 42, 4518–4531 (2013). https://doi.org/10.1039/C2CS35219B

    Article  PubMed  Google Scholar 

  16. Bonnardel, F., Mariethoz, J., Salentin, S., Robin, X., Schroeder, M., Perez, S., Lisacek, F., Imberty, A.: UniLectin3D, a database of carbohydrate binding proteins with curated information on 3D structures and interacting ligands. Nucleic. Acids. Res. 47, D1236–D1244 (2019). https://doi.org/10.1093/nar/gky832

    Article  PubMed  Google Scholar 

  17. Deniaud, D., Julienne, K., Gouin, S.G.: Insights in the rational design of synthetic multivalent glycoconjugates as lectin ligands. Org. Biomol. Chem. 9, 966–979 (2011). https://doi.org/10.1039/C0OB00389A

    Article  CAS  PubMed  Google Scholar 

  18. Kiessling, L.L., Grim, J.C.: Glycopolymer probes of signal transduction. Chem. Soc. Rev. 42, 4476–4491 (2013). https://doi.org/10.1039/c3cs60097a

    Article  CAS  PubMed  Google Scholar 

  19. Fernández-Tejada, A., Cañada, F.J., Jiménez-Barbero, J.: Recent Developments in Synthetic Carbohydrate-Based Diagnostics, Vaccines, and Therapeutics. Chem. A. Eur. J. 21, 10616–10628 (2015). https://doi.org/10.1002/chem.201500831

    Article  CAS  Google Scholar 

  20. Di Lorenzo, F., Duda, K.A., Lanzetta, R., Silipo, A., De Castro, C., Molinaro, A.: A Journey from Structure to Function of Bacterial Lipopolysaccharides. Chem. Rev. (2021). https://doi.org/10.1021/acs.chemrev.0c01321

    Article  PubMed  Google Scholar 

  21. Del Bino, L., Østerlid, K.E., Wu, D.-Y., Nonne, F., Romano, M.R., Codée, J., Adamo, R.: Synthetic Glycans to Improve Current Glycoconjugate Vaccines and Fight Antimicrobial Resistance. Chem. Rev. (2022). https://doi.org/10.1021/acs.chemrev.2c00021

    Article  PubMed  Google Scholar 

  22. Stefanetti, G., Borriello, F., Richichi, B., Zanoni, I., Lay, L.: Immunobiology of Carbohydrates: Implications for Novel Vaccine and Adjuvant Design Against Infectious Diseases. Front. Cell. Infect. Microbiol. 11, 1–23 (2022). https://doi.org/10.3389/fcimb.2021.808005

    Article  CAS  Google Scholar 

  23. Chmielewski, M.J., Buhler, E., Candau, J., Lehn, J.-M.: Multivalency by Self-Assembly: Binding of Concanavalin A to Metallosupramolecular Architectures Decorated with Multiple Carbohydrate Groups. Chem. A. Eur. J. 20, 6960–6977 (2014). https://doi.org/10.1002/chem.201304511

    Article  CAS  Google Scholar 

  24. Xie, J., Bogliotti, N.: Synthesis and Applications of Carbohydrate-Derived Macrocyclic Compounds. Chem. Rev. 114, 7678–7739 (2014). https://doi.org/10.1021/cr400035j

    Article  CAS  PubMed  Google Scholar 

  25. Damalanka, V.C., Maddirala, A.R., Janetka, J.W.: Novel approaches to glycomimetic design: development of small molecular weight lectin antagonists. Expert. Opin. Drug. Discov. 16, 513–536 (2021). https://doi.org/10.1080/17460441.2021.1857721

    Article  CAS  PubMed  Google Scholar 

  26. Ernst, B., Magnani, J.L.: From carbohydrate leads to glycomimetic drugs. Nat. Rev. Drug. Discov. 8, 661–677 (2009). https://doi.org/10.1038/nrd2852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Simard, R.D., Joyal, M., Gillard, L., Di Censo, G., Maharsy, W., Beauregard, J., Colarusso, P., Patel, K.D., Prévost, M., Nemer, M., Guindon, Y.: Synthesis of Sialyl Lewis X Glycomimetics Bearing a Bicyclic 3- O,4- C -Fused Galactopyranoside Scaffold. J. Org. Chem. 84, 7372–7387 (2019). https://doi.org/10.1021/acs.joc.9b01075

    Article  CAS  PubMed  Google Scholar 

  28. Kalas, V., Hibbing, M.E., Maddirala, A.R., Chugani, R., Pinkner, J.S., Mydock-McGrane, L.K., Conover, M.S., Janetka, J.W., Hultgren, S.J.: Structure-based discovery of glycomimetic FmlH ligands as inhibitors of bacterial adhesion during urinary tract infection. Proc. Natl. Acad. Sci. 115, E2819–E2828 (2018). https://doi.org/10.1073/pnas.1720140115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kadam, R.U., Garg, D., Schwartz, J., Visini, R., Sattler, M., Stocker, A., Darbre, T., Reymond, J.: CH−π “T-Shape” Interaction with Histidine Explains Binding of Aromatic Galactosides to Pseudomonas aeruginosa Lectin LecA. ACS. Chem. Biol. 8, 1925–1930 (2013). https://doi.org/10.1021/cb400303w

    Article  CAS  PubMed  Google Scholar 

  30. Sommer, R., Wagner, S., Rox, K., Varrot, A., Hauck, D., Wamhoff, E.-C., Schreiber, J., Ryckmans, T., Brunner, T., Rademacher, C., Hartmann, R.W., Brönstrup, M., Imberty, A., Titz, A.: Glycomimetic, Orally Bioavailable LecB Inhibitors Block Biofilm Formation of Pseudomonas aeruginosa. J. Am. Chem. Soc. 140, 2537–2545 (2018). https://doi.org/10.1021/jacs.7b11133

    Article  CAS  PubMed  Google Scholar 

  31. Borrok, M.J., Kiessling, L.L.: Non-carbohydrate Inhibitors of the Lectin DC-SIGN. J. Am. Chem. Soc. 129, 12780–12785 (2007). https://doi.org/10.1021/ja072944v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kaila, N., Janz, K., DeBernardo, S., Bedard, P.W., Camphausen, R.T., Tam, S., Tsao, D.H.H., Keith, J.C., Nickerson-Nutter, C., Shilling, A., Young-Sciame, R., Wang, Q.: Synthesis and Biological Evaluation of Quinoline Salicylic Acids As P-Selectin Antagonists. J. Med. Chem. 50, 21–39 (2007). https://doi.org/10.1021/jm0602256

    Article  CAS  PubMed  Google Scholar 

  33. Kuhaudomlarp, S., Siebs, E., Shanina, E., Topin, J., Joachim, I., Silva Figueiredo Celestino Gomes, P., Varrot, A., Rognan, D., Rademacher, C., Imberty, A., Titz, A.: Non-Carbohydrate Glycomimetics as Inhibitors of Calcium(II)-Binding Lectins. Angew. Chemie. Int. Ed. 60, 8104–8114 (2021). https://doi.org/10.1002/anie.202013217

    Article  CAS  Google Scholar 

  34. Elsner, K., Boysen, M.M.K., Lindhorst, T.K.: Synthesis of new polyether glycodendrons as oligosaccharide mimetics. Carbohydr. Res. 342, 1715–1725 (2007). https://doi.org/10.1016/j.carres.2007.05.005

    Article  CAS  PubMed  Google Scholar 

  35. Katajisto, J., Karskela, T., Heinonen, P., Lönnberg, H.: An Orthogonally Protected α, α -Bis(aminomethyl)- β - alanine Building Block for the Construction of Glycoconjugates on a Solid Support. J. Org. Chem. 67, 7995–8001 (2002). https://doi.org/10.1021/jo026053b

    Article  CAS  PubMed  Google Scholar 

  36. Ramström, O., Lehn, J.: In Situ Generation and Screening of a Dynamic Combinatorial Carbohydrate Library against Concanavalin A. ChemBioChem. 1, 41–48 (2000). https://doi.org/10.1002/1439-7633(20000703)1

  37. Duléry, V., Renaudet, O., Wilczewski, M., Van der Heyden, A., Labbé, P., Dumy, P.: Randomized Combinatorial Library of Heteroglycoclusters (hGC). J. Comb. Chem. 10, 368–371 (2008). https://doi.org/10.1021/cc800029v

    Article  CAS  PubMed  Google Scholar 

  38. Bellucci, M.C., Sani, M., Sganappa, A., Volonterio, A.: Diversity Oriented Combinatorial Synthesis of Multivalent Glycomimetics Through a Multicomponent Domino Process. ACS. Comb. Sci. 16, 711–720 (2014). https://doi.org/10.1021/co5001184

    Article  CAS  PubMed  Google Scholar 

  39. Meanwell, M., Fehr, G., Ren, W., Adluri, B., Rose, V., Lehmann, J., Silverman, S.M., Rowshanpour, R., Adamson, C., Bergeron-Brlek, M., Foy, H., Challa, V.R., Campeau, L.-C., Dudding, T., Britton, R.: Diversity-oriented synthesis of glycomimetics. Commun. Chem. 4, 96 (2021). https://doi.org/10.1038/s42004-021-00520-3

    Article  CAS  Google Scholar 

  40. Sutherlin, D.P., Stark, T.M., Hughes, R., Armstrong, R.W.: Generation of C-Glycoside Peptide Ligands for Cell Surface Carbohydrate Receptors Using a Four-Component Condensation on Solid Support. J. Org. Chem. 61, 8350–8354 (1996). https://doi.org/10.1021/jo960119j

    Article  CAS  PubMed  Google Scholar 

  41. Westermann, B., Dörner, S.: Synthesis of multivalent aminoglycoside mimics via the Ugi multicomponent reaction. Chem. Commun. 2116–2118 (2005). https://doi.org/10.1039/B501028D

  42. Jakas, A., Višnjevac, A., Jerić, I.: Multicomponent Approach to Homo- and Hetero-Multivalent Glycomimetics Bearing Rare Monosaccharides. J. Org. Chem. 85, 3766–3787 (2020). https://doi.org/10.1021/acs.joc.9b03401

    Article  CAS  PubMed  Google Scholar 

  43. Mauceri, A., Borocci, S., Galantini, L., Giansanti, L., Mancini, G., Martino, A., Salvati Manni, L., Sperduto, C.: Recognition of Concanavalin A by Cationic Glucosylated Liposomes. Langmuir. 30, 11301–11306 (2014). https://doi.org/10.1021/la502946t

    Article  CAS  PubMed  Google Scholar 

  44. Otsuka, I., Hongo, T., Nakade, H., Narumi, A., Sakai, R., Satoh, T., Kaga, H., Kakuchi, T.: Chiroptical and Lectin Recognition Properties of Glycoconjugated Poly(phenylacetylene)s Featuring Variable Saccharide Functionalities. Macromolecules. 40, 8930–8937 (2007). https://doi.org/10.1021/ma7020776

    Article  CAS  Google Scholar 

  45. Yegorova, S., Chavaroche, A.E., Rodriguez, M.C., Minond, D., Cudic, M.: Development of an AlphaScreen assay for discovery of inhibitors of low-affinity glycan–lectin interactions. Anal. Biochem. 439, 123–131 (2013). https://doi.org/10.1016/j.ab.2013.04.028

    Article  CAS  PubMed  Google Scholar 

  46. Hudson, K.L., Bartlett, G.J., Diehl, R.C., Agirre, J., Gallagher, T., Kiessling, L.L., Woolfson, D.N.: Carbohydrate-Aromatic Interactions in Proteins. J. Am. Chem. Soc. 137, 15152–15160 (2015). https://doi.org/10.1021/jacs.5b08424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yadav, S., Naresh, K., Jayaraman, N.: Surface Ligand Density Switches Glycovesicles between Monomeric and Multimeric Lectin Recognition. ChemBioChem. 22, 485–490 (2021). https://doi.org/10.1002/cbic.202000544

    Article  CAS  PubMed  Google Scholar 

  48. Papp, I., Dernedde, J., Enders, S., Riese, S.B., Shiao, T.C., Roy, R., Haag, R.: Multivalent Presentation of Mannose on Hyperbranched Polyglycerol and their Interaction with Concanavalin A Lectin. ChemBioChem. 12, 1075–1083 (2011). https://doi.org/10.1002/cbic.201000718

    Article  CAS  PubMed  Google Scholar 

  49. Kalovidouris, S.A., Gama, C.I., Lee, L.W., Hsieh-Wilson, L.C.: A Role for Fucose α(1–2) Galactose Carbohydrates in Neuronal Growth. J. Am. Chem. Soc. 127, 1340–1341 (2005). https://doi.org/10.1021/ja044631v

    Article  CAS  PubMed  Google Scholar 

  50. Davidson, P.J., Davis, M.J., Patterson, R.J., Ripoche, M.A., Poirier, F., Wang, J.L.: Shuttling of galectin-3 between the nucleus and cytoplasm. Glycobiology. 12, 329–337 (2002). https://doi.org/10.1093/glycob/12.5.329

    Article  CAS  PubMed  Google Scholar 

  51. Hughes, R.: Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim. Biophys. Acta. Gen. Subj. 1473, 172–185 (1999). https://doi.org/10.1016/S0304-4165(99)00177-4

    Article  CAS  Google Scholar 

  52. Nabi, I.R., Shankar, J., Dennis, J.W.: The galectin lattice at a glance. J. Cell. Sci. 128, 2213–2219 (2015). https://doi.org/10.1242/jcs.151159

    Article  CAS  PubMed  Google Scholar 

  53. Vasta, G.R., Feng, C., González-Montalbán, N., Mancini, J., Yang, L., Abernathy, K., Frost, G., Palm, C.: Functions of galectins as ‘self/non-self’-recognition and effector factors. Pathog. Dis. 75, 1–12 (2017). https://doi.org/10.1093/femspd/ftx046

    Article  CAS  Google Scholar 

  54. Ruvolo, P.P.: Galectin 3 as a guardian of the tumor microenvironment. Biochim. Biophys. Acta. Mol. Cell. Res. 1863, 427–437 (2016). https://doi.org/10.1016/j.bbamcr.2015.08.008

    Article  CAS  Google Scholar 

  55. Liu, F.-T., Rabinovich, G.A.: Galectins as modulators of tumour progression. Nat. Rev. Cancer. 5, 29–41 (2005). https://doi.org/10.1038/nrc1527

    Article  CAS  PubMed  Google Scholar 

  56. Doores, K.J., Fulton, Z., Hong, V., Patel, M.K., Scanlan, C.N., Wormald, M.R., Finn, M.G., Burton, D.R., Wilson, I.A., Davis, B.G.: A nonself sugar mimic of the HIV glycan shield shows enhanced antigenicity. Proc. Natl. Acad. Sci. 107, 17107–17112 (2010). https://doi.org/10.1073/pnas.1002717107

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sabnis, R.W.: Novel Galectin-3 Inhibitors for Treating Fibrosis. ACS. Med. Chem. Lett. 12, 174–175 (2021). https://doi.org/10.1021/acsmedchemlett.0c00671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stegmayr, J., Zetterberg, F., Carlsson, M.C., Huang, X., Sharma, G., Kahl-Knutson, B., Schambye, H., Nilsson, U.J., Oredsson, S., Leffler, H.: Extracellular and intracellular small-molecule galectin-3 inhibitors. Sci. Rep. 9, 2186 (2019). https://doi.org/10.1038/s41598-019-38497-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ullman, E.F., Kirakossian, H., Singh, S., Wu, Z.P., Irvin, B.R., Pease, J.S., Switchenko, A.C., Irvine, J.D., Dafforn, A., Skold, C.N.: Luminescent oxygen channeling immunoassay: measurement of particle binding kinetics by chemiluminescence. Proc. Natl. Acad. Sci. 91, 5426–5430 (1994). https://doi.org/10.1073/pnas.91.12.5426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rodriguez, M.C., Yegorova, S., Pitteloud, J.-P., Chavaroche, A.E., André, S., Ardá, A., Minond, D., Jiménez-Barbero, J., Gabius, H.-J., Cudic, M.: Thermodynamic Switch in Binding of Adhesion/Growth Regulatory Human Galectin-3 to Tumor-Associated TF Antigen (CD176) and MUC1 Glycopeptides. Biochemistry. 54, 4462–4474 (2015). https://doi.org/10.1021/acs.biochem.5b00555

    Article  CAS  PubMed  Google Scholar 

  61. FitzGerald, F.G., Rodriguez Benavente, M.C., Garcia, C., Rivero, Y., Singh, Y., Wang, H., Fields, G.B., Cudic, M.: TF-containing MUC1 glycopeptides fail to entice Galectin-1 recognition of tumor-associated Thomsen-Freidenreich (TF) antigen (CD176) in solution. Glycoconj. J. 37, 657–666 (2020). https://doi.org/10.1007/s10719-020-09951-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dam, T.K., Gabius, H.-J., André, S., Kaltner, H., Lensch, M., Brewer, C.F.: Galectins Bind to the Multivalent Glycoprotein Asialofetuin with Enhanced Affinities and a Gradient of Decreasing Binding Constants. Biochemistry. 44, 12564–12571 (2005). https://doi.org/10.1021/bi051144z

    Article  CAS  PubMed  Google Scholar 

  63. Glinskii, O.V., Sud, S., Mossine, V.V., Mawhinney, T.P., Anthony, D.C., Glinsky, G.V., Pienta, K.J., Glinsky, V.V.: Inhibition of Prostate Cancer Bone Metastasis by Synthetic TF Antigen Mimic/Galectin-3 Inhibitor Lactulose-l-Leucine. Neoplasia. 14, 65–73 (2012). https://doi.org/10.1593/neo.111544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Saraboji, K., Håkansson, M., Genheden, S., Diehl, C., Qvist, J., Weininger, U., Nilsson, U.J., Leffler, H., Ryde, U., Akke, M., Logan, D.T.: The Carbohydrate-Binding Site in Galectin-3 Is Preorganized To Recognize a Sugarlike Framework of Oxygens: Ultra-High-Resolution Structures and Water Dynamics. Biochemistry. 51, 296–306 (2012). https://doi.org/10.1021/bi201459p

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support by the Croatian Science Foundation grant number 3102 to I.J. The authors thank Mrs. Milica Perc for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, A.J.; Formal analysis, A.J. R.A.; Investigation, A.J. R.A., M.C.; Methodology, A.J., R.A., I.J., M.C.; Writing–review & editing, A.J., M.C, I.J.

Corresponding authors

Correspondence to Andreja Jakas or Ivanka Jerić.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.43 MB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakas, A., Ayyalasomayajula, R., Cudic, M. et al. Multicomponent reaction derived small di- and tri-carbohydrate-based glycomimetics as tools for probing lectin specificity. Glycoconj J 39, 587–597 (2022). https://doi.org/10.1007/s10719-022-10079-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-022-10079-3

Keywords

Navigation