Skip to main content
Log in

Enhancement of Edwardsiella piscicida infection, biofilm formation, and motility caused by N-acetylneuraminate lyase

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Sialic acid and its catabolism are involved in bacterial pathogenicity. N-acetylneuraminate lyase (NAL), which catalyzes the reversible aldol cleavage of sialic acid to form N-acetyl-D-mannosamine in the first step of sialic acid degradation, has been recently investigated to elucidate whether NAL enhances bacterial virulence; however, the role of NAL in bacterial pathogenicity remains unclear. In the present study, we demonstrated that the existence of two enzymes in Edwardsiella piscicida, referred to as dihydrodipicolinate synthase (DHDPS) and NAL, induced the cleavage/condensation activity toward sialic acids such as N-acetylneuraminic acid, N-glycolylneuraminic acid and 3-deoxy-D-glycero-D-galacto-non-2-ulopyranosonic acid. NAL enhanced cellular infection in vitro and suppressed the survival rate in zebrafish larvae in bath-infection in vivo, whereas DHDPS did not. Furthermore, NAL strongly activated the expression of E. piscicida phenotypes such as biofilm formation and motility, whereas DHDPS did not. Besides, the gene expression level of nanK, nanE, and glmU were up-regulated in the NAL-overexpressing strain, along with an increase in the total amount of N-acetylglucosamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DHDPS:

Dihydrodipicolinate synthase

GlcNAc:

N-Acetylglucosamine

KDN:

3-Deoxy-D-glycero-D-galacto-non-2-ulopyranosonic acid

Man:

Mannose

ManNAc:

N-Acetylmannosamine

NAL:

N-Acetylneuraminate lyase

Neu5Ac:

N-Acetylneuraminic acid

Neu5Gc:

N-Glycolylneuraminic acid

References

  1. Abayneh, T., Colquhoun, D.J., Sørum, H.: Edwardsiella piscicida sp. nov., a novel species pathogenic to fish. J. Appl. Microbiol. 114, 644–654 (2013). https://doi.org/10.1111/jam.12080

  2. Buján, N., Toranzo, A.E., Magariños, B.: Edwardsiella piscicida: a significant bacterial pathogen of cultured fish. Dis. Aquat. Org. 131, 59–71 (2018). https://doi.org/10.3354/dao03281

    Article  CAS  Google Scholar 

  3. Mohanty, B.R., Sahoo, P.K.: Edwardsiellosis in fish: a brief review. J. Biosci. 32, 1331–1344 (2007). https://doi.org/10.1007/s12038-007-0143-8

    Article  CAS  PubMed  Google Scholar 

  4. Nikapitiya, C., Chandrarathna, H.P.S.U., Dananjaya, S.H.S., De Zoysa, M., Lee, J.: Isolation and characterization of phage (ETP-1) specific to multidrug resistant pathogenic Edwardsiella tarda and its in vivo biocontrol efficacy in zebrafish (Danio rerio). Biologicals. 63, 14–23 (2020). https://doi.org/10.1016/j.biologicals.2019.12.006

    Article  PubMed  Google Scholar 

  5. Hu, T., Chen, R., Zhang, L., Wang, Z., Yang, D., Zhang, Y., Liu, X., Liu, Q.: Balanced role of T3SS and T6SS in contribution to the full virulence of Edwardsiella piscicida. Fish Shellfish Immunol. 93, 871–878 (2019). https://doi.org/10.1016/j.fsi.2019.08.014

    Article  CAS  PubMed  Google Scholar 

  6. Li, D.Y., Liu, Y.L., Liao, X.J., He, T.T., Sun, S.S., Nie, P., Xie, H.X.: Identification and characterization of EvpQ, a novel T6SS effector encoded on a mobile genetic element in Edwardsiella piscicida. Front. Microbiol. 12, 643498 (2021). https://doi.org/10.3389/fmicb.2021.643498

    Article  PubMed  PubMed Central  Google Scholar 

  7. Qin, L., Wang, X., Gao, Y., Bi, K., Wang, W.: Roles of EvpP in Edwardsiella piscicida-macrophage interactions. Front. Cell. Infect. Microbiol. 10, 53 (2020). https://doi.org/10.3389/fcimb.2020.00053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu, T., Su, Y., Xu, Y., He, Y., Wang, B., Dong, X., Li, Y., Zhang, X.H.: Mutations of flagellar genes fliC12, fliA and flhDC of Edwardsiella tarda attenuated bacterial motility, biofilm formation and virulence to fish. J. Appl. Microbiol. 116, 236–244 (2014). https://doi.org/10.1111/jam.12357

    Article  CAS  PubMed  Google Scholar 

  9. Xie, J., Zhao, Q., Huang, H., Fang, Z., Hu, Y.: Edwardsiella piscicida HigB: A type II toxin that is essential to oxidative resistance, biofilm formation, serum survival, intracellular propagation, and host infection. Aquaculture 535, 736382 (2021). https://doi.org/10.1016/j.aquaculture.2021.736382

    Article  CAS  Google Scholar 

  10. Zhang, X., Yan, M., Mu, C., Wu, J., Chen, J., Pan, G., Wang, X.: FucP promotes the pathogenicity of Edwardsiella piscicida to infect zebrafish. Aquac. Reports. 20, 100665 (2021). https://doi.org/10.1016/j.aqrep.2021.100665

  11. Chen, J., Mu, C., Ye, T., Sun, Y., Luo, Q., Wang, X.: The UhpA mutant of Edwardsiella piscicida enhanced its motility and the colonization in the intestine of tilapia. Fish Shellfish Immunol. 104, 587–591 (2020). https://doi.org/10.1016/j.fsi.2020.05.065

    Article  CAS  PubMed  Google Scholar 

  12. Ye, T., Mu, C., Chen, J., Pan, G., Wang, X.: The role of UhpA in regulating the virulence gene expression in Edwardsiella piscicida. J. Fish Dis. 44, 585–590 (2021). https://doi.org/10.1111/jfd.13298

    Article  CAS  PubMed  Google Scholar 

  13. Severi, E., Hood, D.W., Thomas, G.H., Severi, E., Hood, D.W., Thomas, G.H.: Sialic acid utilization by bacterial pathogens. Microbiology 153, 2817–2822 (2007). https://doi.org/10.1099/mic.0.2007/009480-0

    Article  CAS  PubMed  Google Scholar 

  14. Haines-Menges, B.L., Whitaker, W.B., Lubin, J.B., Boyd, E.F.: Host sialic acids: A delicacy for the pathogen with discerning taste. In: Conway, T., Cohen, P. (eds.) Metabolism and Bacterial Pathogenesis, pp. 321–342. Wiley, NJ (2015). https://doi.org/10.1128/9781555818883.ch15

    Article  Google Scholar 

  15. Vimr, E.R., Kalivoda, K.A., Deszo, E.L., Steenbergen, S.M.: Diversity of microbial sialic acid metabolism. Microbiol. Mol. Biol. Rev. 68, 132–153 (2004). https://doi.org/10.1128/mmbr.68.1.132-153.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kahya, H.F., Andrew, P.W., Yesilkaya, H.: Deacetylation of sialic acid by esterases potentiates pneumococcal neuraminidase activity for mucin utilization, colonization and virulence. PLoS Pathog. 13, e1006263 (2017). https://doi.org/10.1371/journal.ppat.1006263

  17. Jin, R. Hu, Y. Sun, B. Zhang, X. Sun, L.: Edwardsiella tarda sialidase: Pathogenicity involvement and vaccine potential. Fish Shellfish Immunol. 33, 514–521 (2012). https://doi.org/10.1016/j.fsi.2012.06.002

  18. Chigwechokha, P.K., Tabata, M., Shinyoshi, S., Oishi, K., Araki, K., Komatsu, M., Itakura, T., Shiozaki, K.: Recombinant sialidase NanA (rNanA) cleaves α2-3 linked sialic acid of host cell surface N-linked glycoprotein to promote Edwardsiella tarda infection. Fish Shellfish Immunol. 47, 34–45 (2015). https://doi.org/10.1016/j.fsi.2015.08.015

    Article  CAS  PubMed  Google Scholar 

  19. Vo, L.K., Tsuzuki, T., Kamada-Futagami, Y., Chigwechokha, P.K., Honda, A., Oishi, K., Komatsu, M., Shiozaki, K.: Desialylation by Edwardsiella tarda is the initial step in the regulation of its invasiveness. Biochem. J. 476, 3183–3196 (2019). https://doi.org/10.1042/BCJ20190367

    Article  CAS  PubMed  Google Scholar 

  20. Gurung, M.K., Altermark, B., Helland, R., Smalås, A.O., Ræder, I.L.U.: Features and structure of a cold active N-acetylneuraminate lyase. PLoS One. 14, e0217713 (2019). https://doi.org/10.1371/journal.pone.0217713

  21. Di Pasquale, P., Caterino, M., Di Somma, A., Squillace, M., Rossi, E., Landini, P., Iebba, V., Schippa, S., Papa, R., Selan, L., Artini, M., Palamara, A.T., Duilio, A.: Exposure of E. coli to DNA-methylating agents impairs biofilm formation and invasion of eukaryotic cells via down regulation of the N-acetylneuraminate lyase NanA. Front. Microbiol. 7, 147 (2016). https://doi.org/10.3389/fmicb.2016.00147

  22. Wang, S.L., Li, Y.L., Han, Z., Chen, X., Chen, Q.J., Wang, Y., He, L.S.: Molecular characterization of a novel N-acetylneuraminate lyase from a deep-sea symbiotic mycoplasma. Mar. Drugs. 16, 80 (2018). https://doi.org/10.3390/md16030080

  23. Sánchez-Carrón, G., García-García, M.I., López-Rodríguez, A.B., Jiménez-García, S., Sola-Carvajal, A., García-Carmona, F., Sánchez-Ferrer, A.: Molecular characterization of a novel N-acetylneuraminate lyase from Lactobacillus plantarum WCFS1. Appl. Environ. Microbiol. 77, 2471–2478 (2011). https://doi.org/10.1128/AEM.02927-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tripp, V.T., Maza, J.C., Young, D.D.: Development of rapid microwave-mediated and low-temperature bacterial transformations. J. Chem. Biol. 6, 135–140 (2013). https://doi.org/10.1007/s12154-013-0095-4

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rashid, M.H., Kornberg, A.: Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U. S. A. 97, 4885–4890 (2000). https://doi.org/10.1073/pnas.060030097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yasuno, A., Kokubo, K., Kamei, M.: New method for determining the sugar composition of glycoproteins, glycolipids, and oligosaccharides by high-performance liquid chromatography. Biosci. Biotechnol. Biochem. 63, 1353–1359 (1999). https://doi.org/10.1271/bbb.63.1353

    Article  CAS  PubMed  Google Scholar 

  27. Johnston, J.W., Shamsulddin, H., Miller, A.-F., Apicella, M.A.: Sialic acid transport and catabolism are cooperatively regulated by SiaR and CRP in nontypeable Haemophilus influenzae. BMC Microbiol. 10, 240 (2010). https://doi.org/10.1186/1471-2180-10-240

  28. Mostowy, S., Boucontet, L., Mazon Moya, M.J., Sirianni, A., Boudinot, P., Hollinshead, M., Cossart, P., Herbomel, P., Levraud, J.P., Colucci-Guyon, E.: The zebrafish as a new model for the in vivo study of Shigella flexneri interaction with phagocytes and bacterial autophagy. PLoS Pathog. 9, e1003588 (2013). https://doi.org/10.1371/journal.ppat.1003588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Smith, D.R., Price, J.E., Burby, P.E., Blanco, L.P., Chamberlain, J., Chapman, M.R.: The production of curli amyloid fibers is deeply integrated into the biology of Escherichia coli. Biomolecules. 7, 75 (2017). https://doi.org/10.3390/biom7040075

  30. Hwang, J., Kim, B.S., Jang, S.Y., Lim, J.G., You, D.J., Jung, H.S., Oh, T.K., Lee, J.O., Choi, S.H., Kim, M.H.: Structural insights into the regulation of sialic acid catabolism by the Vibrio vulnificus transcriptional repressor NanR. Proc. Natl. Acad. Sci. U. S. A. 110, E2829–E2837 (2013). https://doi.org/10.1073/pnas.1302859110

    Article  PubMed  PubMed Central  Google Scholar 

  31. Joerger, A.C., Mayer, S., Fersht, A.R.: Mimicking natural evolution in vitro: An N-acetylneuraminate lyase mutant with an increased dihydrodipicolinate synthase activity. Proc. Natl. Acad. Sci. U. S. A. 13, 5694–5699 (2003). https://doi.org/10.1073/pnas.0531477100

  32. Lawrence, M.C., Barbosa, J.A.R.G., Smith, B.J., Hall, N.E., Pilling, P.A., Ooi, H.C., Marcuccio, S.M.: Structure and mechanism of a sub-family of enzymes related to N-acetylneuraminate lyase. J. Mol. Biol. 266, 381–399 (1997). https://doi.org/10.1006/jmbi.1996.0769

  33. Karsten, W., Thomas, L.M., Fleming, C., Seabourn, P., Bruxvoort, C., Chooback, L.: Kinetic, spectral, and structural studies of the slow-binding inhibition of the Escherichia coli dihydrodipicolinate synthase by 2, 4-oxo-pentanoic acid. Arch. Biochem. Biophys. 702, 108819 (2021). https://doi.org/10.1016/j.abb.2021.108819

    Article  CAS  PubMed  Google Scholar 

  34. Impey, R.E., Lee, M., Hawkins, D.A., Sutton, J.M., Panjikar, S., Perugini, M.A., Soares da Costa, T.P.: Mis‐annotations of a promising antibiotic target in high‐priority gram‐negative pathogens. FEBS Lett. 594, 1453–1463 (2020). https://doi.org/10.1002/1873-3468.13733

  35. Ji, W., Sun, W., Feng, J., Song, T., Zhang, D., Ouyang, P., Gu, Z., Xie, J.: Characterization of a novel N-acetylneuraminic acid lyase favoring industrial N-acetylneuraminic acid synthesis process. Sci. Rep. 5, 9341 (2015). https://doi.org/10.1038/srep09341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pélissier, M.C., Sebban-Kreuzer, C., Guerlesquin, F., Brannigan, J.A., Bourne, Y., Vincent, F.: Structural and functional characterization of the Clostridium perfringens N-acetylmannosamine-6-phosphate 2-epimerase essential for the sialic acid salvage pathway. J. Biol. Chem. 289, 35215–35224 (2014). https://doi.org/10.1074/jbc.M114.604272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brigham, C., Caughlan, R., Gallegos, R., Dallas, M.B., Godoy, V.G., Malamy, M.H.: Sialic acid (N-acetyl neuraminic acid) utilization by Bacteroides fragilis requires a novel N-acetyl mannosamine epimerase. J. Bacteriol. 191, 3629–3638 (2009). https://doi.org/10.1128/JB.00811-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kang, J., Gu, P., Wang, Y., Li, Y., Yang, F., Wang, Q., Qi, Q.: Engineering of an N-acetylneuraminic acid synthetic pathway in Escherichia coli. Metab. Eng. 14, 623–629 (2012). https://doi.org/10.1016/j.ymben.2012.09.002

    Article  CAS  PubMed  Google Scholar 

  39. Yan, L., Fu, L., Xia, K., Chen, S., Zhang, F., Dordick, J.S., Linhardt, R.J.: A revised structure for the glycolipid terminus of Escherichia coli K5 heparosan capsular polysaccharide. Biomolecules. 10, 1516 (2020). https://doi.org/10.3390/biom10111516

    Article  CAS  PubMed Central  Google Scholar 

  40. Zhang, D., Ke, X., Liu, Z., Cao, J., Su, Y., Lu, M., Gao, F., Wang, M., Yi, M., Qin, F.: Capsular polysaccharide of Streptococcus agalactiae is an essential virulence factor for infection in Nile tilapia (Oreochromis niloticus Linn.). J. Fish Dis. 42, 293–302 (2019). https://doi.org/10.1111/jfd.12935

  41. Jeong, H.G., Oh, M.H., Kim, B.S., Lee, M.Y., Han, H.J., Choi, S.H.: The capability of catabolic utilization of N-acetylneuraminic acid, a sialic acid, is essential for Vibrio vulnificus pathogenesis. Infect. Immun. 77, 3209–3217 (2009). https://doi.org/10.1128/IAI.00109-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Barnhart, M.M., Chapman, M.R.: Curli biogenesis and function. Annu. Rev. Microbiol. 60, 131–147 (2010). https://doi.org/10.1146/annurev.micro.60.080805.142106

    Article  CAS  Google Scholar 

  43. Rossi, E., Paroni, M., Landini, P.: Biofilm and motility in response to environmental and host-related signals in Gram negative opportunistic pathogens. J. Appl. Microbiol. 125, 1587–1602 (2018). https://doi.org/10.1111/jam.14089

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the technical assistance and useful discussions of Dr. Taiki Futagami, Yuko Futagami, Dr. Kazuki Oishi, and Dr. Akinobu Honda. The financial support by JSPS KAKENHI Grant Number 19K06223 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Shiozaki.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflicts of Interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 144 KB)

Supplementary file2 (PDF 134 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vo, L.K., Tran, N.T., Kubo, Y. et al. Enhancement of Edwardsiella piscicida infection, biofilm formation, and motility caused by N-acetylneuraminate lyase. Glycoconj J 39, 429–442 (2022). https://doi.org/10.1007/s10719-022-10045-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-022-10045-z

Keywords

Navigation