Skip to main content
Log in

Vimentin is important in the neural differentiation of PC12 cells promoted by sialylation

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Sialic acid modification is a kind of post-translational modification. To investigate the regulation effect of sialic acid on neural differentiation, we used CycloManN propanyl perac (CycloManN pro), a metabolic precursor of sialic acid, to treat PC12 cells. We noted that CycloManN pro indeed robustly promoted global sialylation detected by MAL II lectin blot in PC12 cells. Simultaneously, we interestingly found that the neurite outgrowth of PC12 cells was significantly promoted by the CycloManN pro treatment. The profile analysis of sialylated proteins showed that a protein band at 55KD was greatly enhanced especially in PC12L cells after CycloManN pro treatment. After enrichment with lectin MAL II, the proteins in this band were analyzed by mass spectrometry. The results showed that 23 proteins were in the band, but the score of vimentin was the highest among them. To investigate further the role of vimentin in the process of neurite differentiation, vimentin construct was transfected into PC12 cells. We interestingly observed that ectopic expression of vimentin significantly enhanced the neurite outgrowth induced by CycloManN pro. However, after three potential glycosylation sites (Ser-7, Thr-33, Ser-34:) of vimentin were mutated to alanine, overexpression of the mutated vimentin completely lost the enhancement activity for the neural differentiation even in the presence of CycloManN pro. Taken together, our study demonstrated that vimentin was important in the induction of neural differentiation by CycloManN pro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Varki N.M., Strobert E., Dick Jr. E.J., Benirschke K., Varki A.: Biomedical differences between human and nonhuman hominids: potential roles for uniquely human aspects of sialic acid biology. Annu. Rev. Pathol. 6, 365–393 (2011). doi:10.1146/annurev-pathol-011110-130315

    Article  CAS  PubMed  Google Scholar 

  2. Chen X., Varki A.: Advances in the biology and chemistry of sialic acids. ACS Chem. Biol. 5(2), 163–176 (2010). doi:10.1021/cb900266r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Angata T., Varki A.: Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem. Rev. 102(2), 439–469 (2002)

    Article  CAS  PubMed  Google Scholar 

  4. Schwarzkopf M., Knobeloch K.P., Rohde E., Hinderlich S., Wiechens N., Lucka L., Horak I., Reutter W., Horstkorte R.: Sialylation is essential for early development in mice. Proc. Natl. Acad. Sci. U. S. A. 99(8), 5267–5270 (2002). doi:10.1073/pnas.072066199072066199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kontou M., Bauer C., Reutter W., Horstkorte R.: Sialic acid metabolism is involved in the regulation of gene expression during neuronal differentiation of PC12 cells. Glycoconj. J. 25(3), 237–244 (2008). doi:10.1007/s10719-008-9104-1

    Article  CAS  PubMed  Google Scholar 

  6. Harre, U., Lang, S.C., Pfeifle, R., Rombouts, Y., Fruhbeisser, S., Amara, K., Bang, H., Lux, A., Koeleman, C.A., Baum, W., Dietel, K., Grohn, F., Malmstrom, V., Klareskog, L., Kronke, G., Kocijan, R., Nimmerjahn, F., Toes, R.E., Herrmann, M., Scherer, H.U., Schett, G.: Glycosylation of immunoglobulin G determines osteoclast differentiation and bone loss. Nat. Commun. 6, 6651 (2015). doi:10.1038/ncomms7651

  7. Lin C.R., Wei T.Y., Tsai H.Y., Wu Y.T., Wu P.Y., Chen S.T.: Glycosylation-dependent interaction between CD69 and S100 A8/S100 A9 complex is required for regulatory T-cell differentiation. FASEB J. 29(12), 5006–5017 (2015). doi:10.1096/fj.15-273987

    Article  CAS  PubMed  Google Scholar 

  8. Dave J.M., Bayless K.J.: Vimentin as an integral regulator of cell adhesion and endothelial sprouting. Microcirculation. 21(4), 333–344 (2014). doi:10.1111/micc.12111

    Article  CAS  PubMed  Google Scholar 

  9. Chang I.A.: Oh, M.J., Kim, M.H., park, S.K., Kim, B.G., Namgung, U.: vimentin phosphorylation by Cdc2 in Schwann cell controls axon growth via beta1-integrin activation. FASEB J. 26(6), 2401–2413 (2012). doi:10.1096/fj.11-199018

    Article  CAS  PubMed  Google Scholar 

  10. Oetke C., Brossmer R., Mantey L.R., Hinderlich S., Isecke R., Reutter W., Keppler O.T., Pawlita M.: Versatile biosynthetic engineering of sialic acid in living cells using synthetic sialic acid analogues. J. Biol. Chem. 277(8), 6688–6695 (2002). doi:10.1074/jbc.M109973200M109973200

    Article  CAS  PubMed  Google Scholar 

  11. Keppler O.T., Horstkorte R., Pawlita M., Schmidt C., Reutter W.: Biochemical engineering of the N-acyl side chain of sialic acid: biological implications. Glycobiology. 11(2), 11R–18R (2001)

    Article  CAS  PubMed  Google Scholar 

  12. Wu W., Dong Y.W., Shi P.C., Yu M., Fu D., Zhang C.Y., Cai Q.Q., Zhao Q.L., Peng M., Wu L.H., Wu X.Z.: Regulation of integrin alphaV subunit expression by sulfatide in hepatocellular carcinoma cells. J. Lipid Res. 54(4), 936–952 (2013). doi:10.1194/jlr.M031450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shao K., Chen Z.Y., Gautam S., Deng N.H., Zhou Y., Wu X.Z.: Posttranslational modification of E-cadherin by core fucosylation regulates Src activation and induces epithelial-mesenchymal transition-like process in lung cancer cells. Glycobiology. 26(2), 142–154 (2016). doi:10.1093/glycob/cwv089

    Article  CAS  PubMed  Google Scholar 

  14. Bieberich E., MacKinnon S., Silva J., Yu R.K.: Regulation of apoptosis during neuronal differentiation by ceramide and b-series complex gangliosides. J. Biol. Chem. 276(48), 44396–44404 (2001). doi:10.1074/jbc.M107239200M107239200

    Article  CAS  PubMed  Google Scholar 

  15. Yamamoto H., Oviedo A., Sweeley C., Saito T., Moskal J.R.: Alpha2,6-sialylation of cell-surface N-glycans inhibits glioma formation in vivo. Cancer Res. 61(18), 6822–6829 (2001)

    CAS  PubMed  Google Scholar 

  16. Mahal L.K., Yarema K.J., Bertozzi C.R.: Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science. 276(5315), 1125–1128 (1997)

    Article  CAS  PubMed  Google Scholar 

  17. Sampathkumar S.G., Li A.V., Jones M.B., Sun Z., Yarema K.J.: Metabolic installation of thiols into sialic acid modulates adhesion and stem cell biology. Nat. Chem. Biol. 2(3), 149–152 (2006). doi:10.1038/nchembio770

    Article  CAS  PubMed  Google Scholar 

  18. Thiery J.P.: Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer. 2(6), 442–454 (2002). doi:10.1038/nrc822

    Article  CAS  PubMed  Google Scholar 

  19. Hyder C.L., Pallari H.M., Kochin V., Eriksson J.E.: Providing cellular signposts--post-translational modifications of intermediate filaments. FEBS Lett. 582(14), 2140–2148 (2008). doi:10.1016/j.febslet.2008.04.064S0014-5793(08)00407-9

    Article  CAS  PubMed  Google Scholar 

  20. Farach A.M., Galileo D.S.: O-GlcNAc modification of radial glial vimentin filaments in the developing chick brain. Brain Cell Biol. 36(5–6), 191–202 (2008). doi:10.1007/s11068-008-9036-5

    Article  CAS  PubMed  Google Scholar 

  21. Eriksson J.E., He T., Trejo-Skalli A.V., Harmala-Brasken A.S., Hellman J., Chou Y.H., Goldman R.D.: Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. J Cell Sci. 117(Pt 6), 919–932 (2004). doi:10.1242/jcs.00906 jcs.00906

    Article  CAS  PubMed  Google Scholar 

  22. Ivaska J., Vuoriluoto K., Huovinen T., Izawa I., Inagaki M., Parker P.J.: PKCepsilon-mediated phosphorylation of vimentin controls integrin recycling and motility. EMBO J. 24(22), 3834–3845 (2005). doi:10.1038/sj.emboj.7600847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang Z., Pandey A., Hart G.W.: Dynamic interplay between O-linked N-acetylglucosaminylation and glycogen synthase kinase-3-dependent phosphorylation. Mol. Cell. Proteomics. 6(8), 1365–1379 (2007). doi:10.1074/mcp.M600453-MCP200

    Article  CAS  PubMed  Google Scholar 

  24. Rho J.H., Roehrl M.H., Wang J.Y.: Glycoproteomic analysis of human lung adenocarcinomas using glycoarrays and tandem mass spectrometry: differential expression and glycosylation patterns of vimentin and fetuin a isoforms. Protein J. 28(3–4), 148–160 (2009). doi:10.1007/s10930-009-9177-0

    Article  CAS  PubMed  Google Scholar 

  25. Komura K., Ise H., Akaike T.: Dynamic behaviors of vimentin induced by interaction with GlcNAc molecules. Glycobiology. 22(12), 1741–1759 (2012). doi:10.1093/glycob/cws118

    Article  CAS  PubMed  Google Scholar 

  26. Ise H., Goto M., Komura K., Akaike T.: Engulfment and clearance of apoptotic cells based on a GlcNAc-binding lectin-like property of surface vimentin. Glycobiology. 22(6), 788–805 (2012). doi:10.1093/glycob/cws052

    Article  CAS  PubMed  Google Scholar 

  27. Ise H., Kobayashi S., Goto M., Sato T., Kawakubo M., Takahashi M., Ikeda U., Akaike T.: Vimentin and desmin possess GlcNAc-binding lectin-like properties on cell surfaces. Glycobiology. 20(7), 843–864 (2010). doi:10.1093/glycob/cwq039

    Article  CAS  PubMed  Google Scholar 

  28. Vaudry D., Stork P.J., Lazarovici P., Eiden L.E.: Signaling pathways for PC12 cell differentiation: making the right connections. Science. 296(5573), 1648–1649 (2002). doi:10.1126/science.1071552296/5573/1648

    Article  CAS  PubMed  Google Scholar 

  29. Lian N., Lin T., Liu W., Wang W., Li L., Sun S., Nyman J.S., Yang X.: Transforming growth factor beta suppresses osteoblast differentiation via the vimentin activating transcription factor 4 (ATF4) axis. J. Biol. Chem. 287(43), 35975–35984 (2012). doi:10.1074/jbc.M112.372458M112.372458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Natural Science Foundation of China (81271505, 31570800 81571359 and 31400689), the Joint Key Scientific Research Program, Zhejiang Province & Ministry of Public Health, P.R. China (WKJ2012-2-018) and Hangzhou Medical College Academic Incubation Program (00004D11401).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Hui Wu or Xing Zhong Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L.H., Shao, X.T., Guo, J.X. et al. Vimentin is important in the neural differentiation of PC12 cells promoted by sialylation. Glycoconj J 34, 51–59 (2017). https://doi.org/10.1007/s10719-016-9727-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9727-6

Keywords

Navigation