Skip to main content
Log in

O-GlcNAc modification of radial glial vimentin filaments in the developing chick brain

  • Published:
Brain Cell Biology

Abstract

We examined the post-translational modification of intracellular proteins by β-O-linked N-acetylglucosamine (O-GlcNAc) with regard to neurofilament phosphorylation in the developing chick optic tectum. A regulated developmental pattern of O-GlcNAcylation was discovered in the developing brain. Most notably, discernible staining occurs along radial glial filaments but not along neuronal filaments in vivo. Immunohistochemical analyses in sections of progressive stages of development suggest upregulation of O-GlcNAc in the ependyma, tectofugal neuron bodies, and radial glial processes, but not in axons. In contrast, double-label immunostaining of monolayer cultures made from dissociated embryonic day (E) 7 optic tecta revealed O-GlcNAcylation of most axons. Labeling of brain sections together with Western blot analyses showed O-GlcNAc modification of a few discrete proteins throughout development, and suggested vimentin as the protein in radial glia. Immunoprecipitation of vimentin from E9 whole brain lysates confirmed O-GlcNAcylation of vimentin in development. These results indicate a regulated pattern of O-GlcNAc modification of vimentin filaments, which in turn suggests a role for O-GlcNAc-modified intermediate filaments in radial glia, but not in neurons during brain development. The control mechanisms that regulate this pattern in vivo, however, are disrupted when cells are placed in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akimoto, Y. Comer, F. I., Cole, R. N., Kudo, A., Kawakami, H., Hirano, H., and Hart, G. W. (2003). Localization of the O-GlcNAc transferase and O-GlcNAc-modified proteins in the rat cerebellar cortex. Brain Research. 966, 194–205.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, G.S. and DiLullo, C. (1985). Slow posttranslational modification of a neurofilament protein. J. Cell Biol., 100(5), 1799–1804.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, G. S., Tapscott, S. J., DiLullo, C., and Holtzer, H. (1984). Differential binding of antibodies against the neurofilament triplet proteins in different avian neurons. Brain Res. 304, 291–302.

    Article  PubMed  CAS  Google Scholar 

  • Comer, F. I., Vosesller, K., Wells, L., Accavitti, M. A., and Hart, G.W. (2001). Characterization of a mouse monoclonal antibody specific for O-linked N-acetylglucosamine. Anal. Biochem. 293, 169–77.

    Article  PubMed  CAS  Google Scholar 

  • Deng, Y., Li, B., Liu, F., Iqbal, K., Grundke-Iqbal, I., Brandt, R., and Gong, C.-X. (2007). Regulation between O-GlcNAcylation and phosphorylation of neurofilament-M and their dysregulation in Alzheimer disease. FASEB J. (published online August 8, 2007)

  • Dong, D. L.-Y., Xu, Z. S., Chevrier, M. R., Cotter, R. J., Cleveland, D. W., and Hart, G. W. (1993). Glycosylation of mammalian neurofilaments. Localization of multiple O-linked N-acetylglucosamine moieties on neurofilament polypeptides L and M. J Biol Chem. 268, 6679–87.

    Google Scholar 

  • Dong, D. L.-Y., Xu, Z. S., Hart, G. W., Cleveland, D. W. (1996). Cytoplasmic O-GlcNAc Modification of the Head Domain and the KSP Repeat Motif of the Neurofilament Protein Neurofilament-H. J. Biol. Chem., 271(34), 20845–20852.

    Article  PubMed  CAS  Google Scholar 

  • Galileo, D.S. (2003). Spatio-temporal gradient of oligodendrocyte differentiation in chick optic tectum requires brain integrity and cell-cell interactions. Glia, 41, 25–37.

    Article  PubMed  Google Scholar 

  • Galileo, D.S., Majors, J., Horwitz, A.F., and Sanes, J.R. (1992). Retrovirally introduced antisense integrin RNA inhibits neuroblast migration in vivo. Neuron, 9, 1117–1131.

    Article  PubMed  CAS  Google Scholar 

  • Gray, G.E. and Sanes, J.R. (1992). Lineage of radial glia in the chicken optic tectum. Development, 114, 271–283.

    PubMed  CAS  Google Scholar 

  • Herman, J. P., Victor, J. C., and Sanes, J. R. (1993). Developmentally regulated and spatially restricted antigens of radial glial cells. Dev Dyn. 197, 307–18.

    PubMed  CAS  Google Scholar 

  • Katsumoto, T., Mitsushima, A., and Kurimura, T. (1990). Biol. Cell 68, 139–146.

    Article  PubMed  CAS  Google Scholar 

  • Khidekel, N., Ficarro, S. B., Peters, E. C., amd Hsieh-Wilson, L. C. (2004). Exploring the O-GlcNAc proteome: Direct identification of O-GlcNAc-modified proteins from the brain. PNAS. 101, 13132–13137.

    Article  PubMed  CAS  Google Scholar 

  • Kroger, S. and Schwarz, U. (1990). The avian tectobulbar tract: development, explant culture, and effects of antibodies on the pattern of neurite outgrowth. J Neurosci., 10(9), 3118–34.

    PubMed  CAS  Google Scholar 

  • Kroger, S. and Walter, J. (1991). Molecular mechanisms separating two axonal pathways during embryonic development of the avian optic tectum. Neuron, 6(2):291–303.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M. K., and Cleveland, D. W. (1996). Neuronal intermediate filaments. Annu. Rev. Neurosci. 19, 187–217.

    Article  PubMed  CAS  Google Scholar 

  • Liu, F., Iqbal, K., Grundke-Iqbal, I., Hart, G. W., and Gong, C. X. (2004). O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci U S A. 101, 10804–10809.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, Y., Hashimoto, R., Amano, M., Nagata, K., Matsumoto, N., Goto, H., Fukusho, E., Mori, H., Kashiwagi, Y., Kudo T., Inagaki, M., and Takeda, M. (2000). Localized phosphorylation of vimentin by rho-kinase in neuroblastoma N2a cells. Genes Cells 5, 823–837.

    Article  PubMed  CAS  Google Scholar 

  • Nixon, R. A., Paskevich, P. A., Sihag, R. K., and Thayer, C. Y. (1994). Phosphorylationon carboxyl terminus domains of neurofilament proteins in retinal ganglion cell neurons in vivo: influences on regional neurofilament accumulation, inter-filament spacing and axonal caliber. J. Cell Biol. 126, 1031–1046.

    Article  PubMed  CAS  Google Scholar 

  • Pant, H. C., and Veeranna. (1995). Neurofilament phosphorylation. Biochem. Cell Biol. 73, 575–592

  • Rakic, P. (1972). Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol., 141, 283–312.

    Article  Google Scholar 

  • Rex-Mathes, M., Werner, S., Strutas, D., Griffith, L. S., Viebahn, C., Thelen, K., and Schmitz, B. (2001). O-GlcNAc expression in develoing and ageing mouse brain. Biochimic. 83, 583–590.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez, I., Hassinger, L., Sihag, R. K., Cleveland, D. W., Mohan, P., and Nixon, R. A. (2000). Local control of neurofilament accumulation during radial growth of myelinating axons in vivo: Selective role of site-specific phosphorylation. J. Cell Biol. 151, 1013–1024.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, G. (1998). Neurofilaments. Springer-Verlag, Berlin.

    Google Scholar 

  • Stettler, E. M. and Galileo, D. S. (2005). Radial glia produce and align the ligand fibronectin during neuronal migration in the developing chick brain. J. Comp. Neurol., 468(3), 441–451.

    Article  Google Scholar 

  • Treubert-Zimmermann, U., Heyers, D., and Redies, C. (2002). Targeting axons to specific fiber tracts in vivo by altering cadherin expression. J. Neurosci., 22(17), 7617–7626.

    PubMed  CAS  Google Scholar 

  • Wang, Z., Pandey, A., and Hart, G. W. (2007). Dynamic interplay between O-GlcNAcylation and GSK-3-dependent phosphorylation. Mol. Cell. Proteomics (Epub ahead of print)

  • Wu, C. C., Russell, R. M., and Karten, H. J. (2000). Ontogeny of the tectorotundal pathway in chicks (Gallus gallus): birthdating and pathway tracing study. J. Comp. Neurol., 417(1), 115–132.

    Article  PubMed  CAS  Google Scholar 

  • Zachara, Z. E., O’Donnell, N., Cheung, W. D., Mercer, J. J., Marth, J. D., and Hart G. W. (2004). Dynamic O-GlcNAc Modification of Nucleocytoplasmic Proteins in Response to Stress. J. Biol. Chem., 279(29) 30133–30142.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Gerald Hart for the kind gift of anti-O-GlcNAc monoclonal antibody and Dr. Gudrun Bennett for the kind gift of anti-NFM 160 polyclonal antibody. A.M.F. was supported by Howard Hughes Medical Institute and Charles Peter White fellowships in the University of Delaware Undergraduate Research Program. This research was supported in part by a grant to D.S.G. from NINDS (NS40317).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deni S. Galileo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farach, A.M., Galileo, D.S. O-GlcNAc modification of radial glial vimentin filaments in the developing chick brain. Brain Cell Bio 36, 191–202 (2008). https://doi.org/10.1007/s11068-008-9036-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11068-008-9036-5

Keywords

Navigation