Skip to main content
Log in

Synthesis, characterization and anticancer activity of tanshinone I grafted low molecular chitosan

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

In this study, we synthesized a novel water-soluble low molecular chitosan (LMC) derivative through Vilsmeier reaction and reductive amination reaction. The derivative was characterized by UV-visible spectroscopy, 1H NMR, FTIR and SEM techniques. The results showed that the derivative effectively reduced the cell viability rate, inhibited cell metastasis, induced cell apoptosis and dissipated mitochondrial membrane potential (ΔΨm). Moreover, the antitumor activity was strengthened with the increase of the degree of substitution of tanshinone I (TanI). These findings provided important support for developing new water-soluble antitumor agent and expand the scope of application of LMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rinaudo M.: Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31(7), 603–632 (2006)

    Article  CAS  Google Scholar 

  2. Kumar M.N.R.: A review of chitin and chitosan applications. React. Funct. Polym. 46(1), 1–27 (2000)

    Article  CAS  Google Scholar 

  3. Pillai C., Paul W., Sharma C.P.: Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 34(7), 641–678 (2009)

    Article  CAS  Google Scholar 

  4. Jeon Y.-J., Kim S.-K.: Production of chitooligosaccharides using an ultrafiltration membrane reactor and their antibacterial activity. Carbohydr. Polym. 41(2), 133–141 (2000)

    Article  CAS  Google Scholar 

  5. Xia W., Liu P., Zhang J., Chen J.: Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll. 25(2), 170–179 (2011)

    Article  CAS  Google Scholar 

  6. Xu J., Zhao X., Han X., Du Y.: Antifungal activity of oligochitosan against Phytophthora capsici and other plant pathogenic fungi in vitro. Pestic. Biochem. Physiol. 87(3), 220–228 (2007)

    Article  CAS  Google Scholar 

  7. Lu Y., Slomberg D.L., Schoenfisch M.H.: Nitric oxide-releasing chitosan oligosaccharides as antibacterial agents. Biomaterials. 35(5), 1716–1724 (2014)

    Article  CAS  PubMed  Google Scholar 

  8. He Q., Gong K., Ao Q., Ma T., Yan Y., Gong Y., Zhang X.: Positive charge of chitosan retards blood coagulation on chitosan films. J. Biomater. Appl. 27(8), 1032–1045 (2013)

    Article  PubMed  Google Scholar 

  9. Huang R., Mendis E., Rajapakse N., Kim S.-K.: Strong electronic charge as an important factor for anticancer activity of chitooligosaccharides (COS). Life Sci. 78(20), 2399–2408 (2006)

    Article  CAS  PubMed  Google Scholar 

  10. Zhou L., Zuo Z., Chow M.S.S.: Danshen: an overview of its chemistry, Pharmacology, pharmacokinetics, and clinical use. J. Clin. Pharmacol. 45(12), 1345–1359 (2005)

    Article  CAS  PubMed  Google Scholar 

  11. Dong Y., Morris-Natschke S.L., Lee K.-H.: Biosynthesis, total syntheses, and antitumor activity of tanshinones and their analogs as potential therapeutic agents. Nat. Prod. Rep. 28(3), 529–542 (2011)

    Article  CAS  PubMed  Google Scholar 

  12. Liu, Q.y., Zhang, Z.h., Jin, X., Jiang, Y.R., Jia, X.B.: Enhanced dissolution and oral bioavailability of tanshinone IIA base by solid dispersion system with low-molecular-weight chitosan. J. Pharm. Pharmacol. 65(6), 839–846 (2013).

  13. Zeng L.-W., Zhou C.-X., Liu J.-D., Liu C.-H., Mo J.-X., Hou A.-F., Yao W., Wang Z.-Z., Gan L.-S.: Design, synthesis, and antimicrobial activities of new tanshinone IIA esters. Nat. Prod. Res. 1, 1–7 (2016)

    Google Scholar 

  14. Su W., Weng Y., Jiang L., Yang Y., Zhao L., Chen Z., Li Z., Li J.: Recent progress in the use of Vilsmeier-type reagents. Org. Prep. Proced. Int. 42(6), 503–555 (2010)

    Article  CAS  Google Scholar 

  15. Yalpani, M., Hall, L.D.: Some chemical and analytical aspects of polysaccharide modifications. III. Formation of branched-chain, soluble chitosan derivatives. Macromolecules 17(3), 272–281 (1984).

  16. Zhang A., Mu H., Zhang W., Cui G., Zhu J., Duan J.: Chitosan coupling makes microbial biofilms susceptible to antibiotics. Sci. Report. 3, (2013). doi:10.1038/srep03364

  17. Zhang W., Dong D., Li P., Wang D., Mu H., Niu H., Duan J.: Novel pH-sensitive polysialic acid based polymeric micelles for triggered intracellular release of hydrophobic drug. Carbohydr. Polym. 139, 75–81 (2016)

    Article  CAS  PubMed  Google Scholar 

  18. He G., Chen X., Yin Y., Zheng H., Xiong X., Du Y.: Synthesis, characterization and antibacterial activity of salicyloyl chitosan. Carbohydr. Polym. 83(3), 1274–1278 (2011)

    Article  CAS  Google Scholar 

  19. Amoozgar Z., Park J., Lin Q., Yeo Y.: Low molecular-weight chitosan as a pH-sensitive stealth coating for tumor-specific drug delivery. Mol. Pharm. 9(5), 1262–1270 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Leane M., Nankervis R., Smith A., Illum L.: Use of the ninhydrin assay to measure the release of chitosan from oral solid dosage forms. Int. J. Pharm. 271(1), 241–249 (2004)

    Article  CAS  PubMed  Google Scholar 

  21. Tan S.C., Khor E., Tan T.K., Wong S.M.: The degree of deacetylation of chitosan: advocating the first derivative UV-spectrophotometry method of determination. Talanta. 45(4), 713–719 (1998)

    Article  CAS  PubMed  Google Scholar 

  22. Wang M., Zhang L., Han X., Yang J., Qian J., Hong S., Samaniego F., Romaguera J., Yi Q.: Atiprimod inhibits the growth of mantle cell lymphoma in vitro and in vivo and induces apoptosis via activating the mitochondrial pathways. Blood. 109(12), 5455–5462 (2007)

    Article  CAS  PubMed  Google Scholar 

  23. Liu M.-C., Yang S.-J., Jin L.-H., Hu D.-Y., Xue W., Song B.-A., Yang S.: Synthesis and cytotoxicity of novel ursolic acid derivatives containing an acyl piperazine moiety. Eur. J. Med. Chem. 58, 128–135 (2012)

    Article  CAS  PubMed  Google Scholar 

  24. Xin H., Liu X.H., Zhu Y.Z.: Herba leonurine attenuates doxorubicin-induced apoptosis in H9c2 cardiac muscle cells. Eur. J. Pharmacol. 612(1), 75–79 (2009)

    Article  CAS  PubMed  Google Scholar 

  25. Parashar S., Cheishvili D., Arakelian A., Hussain Z., Tanvir I., Khan H.A., Szyf M., Rabbani S.A.: S-adenosylmethionine blocks osteosarcoma cells proliferation and invasion in vitro and tumor metastasis in vivo: therapeutic and diagnostic clinical applications. Cancer medicine. 4(5), 732–744 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu X., Xia W., Jiang Q., Xu Y., Yu P.: Synthesis, characterization, and antimicrobial activity of kojic acid grafted chitosan oligosaccharide. J. Agric. Food Chem. 62(1), 297–303 (2013)

    Article  PubMed  Google Scholar 

  27. Simons W.W.: Sadtler handbook of infrared spectra. Sadtler research laboratories (1978)

  28. Lavertu M., Xia Z., Serreqi A., Berrada M., Rodrigues A., Wang D., Buschmann M., Gupta A.: A validated 1 H NMR method for the determination of the degree of deacetylation of chitosan. J. Pharm. Biomed. Anal. 32(6), 1149–1158 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. Badawy M.E.: Chemical modification of chitosan: synthesis and biological activity of new heterocyclic chitosan derivatives. Polym. Int. 57(2), 254–261 (2008)

    Article  Google Scholar 

  30. Sashiwa, H., Aiba, S.-i.: Chemically modified chitin and chitosan as biomaterials. Prog. Polym. Sci. 29(9), 887–908 (2004).

  31. Curotto E., Aros F.: Quantitative determination of chitosan and the percentage of free amino groups. Anal. Biochem. 211(2), 240–241 (1993)

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Y., Jiang P., Ye M., Kim S.-H., Jiang C., Lü J.: Tanshinones: sources, pharmacokinetics and anti-cancer activities. Int. J. Mol. Sci. 13(10), 13621–13666 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ly J.D., Grubb D., Lawen A.: The mitochondrial membrane potential (Δψm) in apoptosis; an update. Apoptosis. 8(2), 115–128 (2003)

    Article  CAS  PubMed  Google Scholar 

  34. Na Y.: Recent cancer drug development with xanthone structures. J. Pharm. Pharmacol. 61(6), 707–712 (2009)

    Article  CAS  PubMed  Google Scholar 

  35. Pecere T., Gazzola M.V., Mucignat C., Parolin C., Dalla Vecchia F., Cavaggioni A., Basso G., Diaspro A., Salvato B., Carli M.: Aloe-emodin is a new type of anticancer agent with selective activity against neuroectodermal tumors. Cancer Res. 60(11), 2800–2804 (2000)

    CAS  PubMed  Google Scholar 

  36. Salvioli S., Ardizzoni A., Franceschi C., Cossarizza A.: JC-1, but not DiOC 6 (3) or rhodamine 123, is a reliable fluorescent probe to assess ΔΨ changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett. 411(1), 77–82 (1997)

    Article  CAS  PubMed  Google Scholar 

  37. Chaffer C.L., Weinberg R.A.: A perspective on cancer cell metastasis. Science. 331(6024), 1559–1564 (2011)

    Article  CAS  PubMed  Google Scholar 

  38. Twentyman P., Luscombe M.: A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br. J. Cancer. 56(3), 279 (1987)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (NSFC) (Grant31570799) and Program for New Century Excellent Talents in University (NCET-13-0480).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lili Ma or Jinyou Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

The manuscript did not contain animal experiments, and all other experiments were compliance with ethical standards.

Electronic supplementary material

ESM 1

(PDF 471 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., DanXu, Sun, Y. et al. Synthesis, characterization and anticancer activity of tanshinone I grafted low molecular chitosan. Glycoconj J 34, 3–12 (2017). https://doi.org/10.1007/s10719-016-9712-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9712-0

Keywords

Navigation