Skip to main content

Anticancer Effects of Chitooligosaccharides

  • Chapter
  • First Online:
Chitooligosaccharides

Abstract

Investigation into the novel biocompatible substances with anticancer activity has adopted a new route for the development of chemotherapeutic substances, due to their reduced toxicity on normal cells. Chitooligosaccharides are the biopolymers derived from Chitosan. Due to poor water solubility issues, chitin and chitosan have fewer actions against malignant cells. Water-soluble derivatives of chitin and chitosan were developed using physical, chemical, and enzymatic methods to generate chitooligosaccharides (COS) with outperforming biological activity compared to the naive polymer. Because of the COS's reduced molecular weight with the degree of polarization, solubility, and certain physicochemical properties, it is widely used in a variety of sectors for the product development. COS can easily permeate the cancer cells. COS derivatives greatly limit the formation of new blood vessels in tumors, thereby blocking tumor progression and metastasis. It has the ability to decrease free radicals in normal cells, which are implicated in cellular damage. In this book chapter, we discuss how chitooligosaccharides and their derivatives affect cancer cells, their apoptotic and antiangiogenic activities, their utilization in drug delivery, and designing novel therapeutic approaches for cancer using COS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aam BB, Heggset EB, Norberg AL, Sørlie M, Varum KM, Eijsink VG (2010) Production of chitooligosaccharides and their potential applications in medicine. Mar Drugs 8:1482–1517

    Article  CAS  Google Scholar 

  • Amirani E, Hallajzadeh J, Asemi Z, Mansournia MA, Yousefi B (2020) Effects of chitosan and oligochitosans on the phosphatidylinositol 3-kinase-AKT pathway in cancer therapy. Int J Biol Macromol 164: 456–467

    Google Scholar 

  • Bae KH, Park M, Do MJ, Lee N, Ryu JH, Kim GW, Kim C, Park TG, Hyeon T (2012) Chitosan oligosaccharide-stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia. ACS Nano 6:5266–5273

    Article  CAS  Google Scholar 

  • Behera HT, Upadhyay AK, Raina V, Ray L (2019) Optimization of media components for the production of N-acetylchitooligosaccharide from chitin by Streptomyces chilikensis through Taguchi experimental design. J Microbiol Methods 159: 194–199

    Google Scholar 

  • Behera HT, Mojumdar A, Das SR, Jema S, Ray L (2020) Production of N-acetyl chitooligosaccharide by novel Streptomyces chilikensis strain RC1830 and its evaluation for anti-radical, anti-inflammatory, anti-proliferative and cell migration potential. Bioresour Technol Rep 11:100428

    Google Scholar 

  • Bhatnagar I, Venkatesan J, Kim SK (2014) Polymer functionalized single walled carbon nanotubes mediated drug delivery of gliotoxin in cancer cells. J Biomed Nanotech 10:120–130

    Article  CAS  Google Scholar 

  • Cabrera JC, Van Cutsem P (2005) Preparation of chitooligosaccharides with degree of polymerization higher than 6 by acid or enzymatic degradation of chitosan. Biochem Eng J 25:165–172

    Article  CAS  Google Scholar 

  • Chatterjee S, Hui PC, Siu WS, Kan CW, Leung PC, Wanxue C, Chiou JC (2021) Influence of pH-responsive compounds synthesized from chitosan and hyaluronic acid on dual-responsive (pH/temperature) hydrogel drug delivery systems of Cortex Moutan. Int J Biol Macromol 168:163–174

    Article  CAS  Google Scholar 

  • Chen L, Du Y, Huang R (2003) Novel pH, ion sensitive polyampholyte gels based on carboxymethyl chitosan and gelatin. Polym Int 52:56–61

    Article  CAS  Google Scholar 

  • Chinnaiyan P, Huang S, Vallabhaneni G, Armstrong E, Varambally S, Tomlins SA, Chinnaiyan AM, Harari PM (2005) Mechanisms of enhanced radiation response following epidermal growth factor receptor signaling inhibition by erlotinib (Tarceva). Cancer Res 65: 3328–3335

    Google Scholar 

  • Cho YI, Park S, Jeong SY, Yoo HS (2009) In vivo and in vitro anti-cancer activity of thermo-sensitive and photo-crosslinkable doxorubicin hydrogels composed of chitosan–doxorubicin conjugates. Eur J Pharm Biopharm 73:59–65

    Article  CAS  Google Scholar 

  • Chokradjaroen C, Rujiravanit R, Watthanaphanit A, Theeramunkong S, Saito N, Yamashita K, Arakawa R (2017) Enhanced degradation of chitosan by applying plasma treatment in combination with oxidizing agents for potential use as an anticancer agent. Carbohydr Polym 167:1–1

    Article  CAS  Google Scholar 

  • Chokradjaroen C, Rujiravanit R, Theeramunkong S, Saito N (2017) Degradation of chitosan hydrogel dispersed in dilute carboxylic acids by solution plasma and evaluation of anticancer activity of degraded products. Jpn J Appl Phys 57:0102B5

    Google Scholar 

  • Choudhury H, Maheshwari R, Pandey M, Tekade M, Gorain B, Tekade RK (2020) Advanced nanoscale carrier-based approaches to overcome biopharmaceutical issues associated with anticancer drug ‘Etoposide’. Mater Sci Eng C 106:110275

    Google Scholar 

  • de Santana SC, da Silva Filho RC, de Oliveira JA, de Macedo GR, Padilha FF, dos Santos ES (2015) Enhancing purification of chitosanase from Metarhiziumanisopliae by expanded bed adsorption chromatography using Doehlert design. Biocatal Agric Biotechnol 4:727–736

    Article  Google Scholar 

  • Elbehairi SE, Alfaifi MY, Shati AA, Alshehri MA, Elshaarawy RF, Hafez HS (2020) Role of Pd (II)–chitooligosaccharides–gboxinanalog in oxidative phosphorylation inhibition and energy depletion: targeting mitochondrial dynamics. Chem Biol Drug Design 96:1148–1161

    Article  CAS  Google Scholar 

  • El-Kenawi AE, El-Remessy AB (2013) Angiogenesis inhibitors in cancer therapy: mechanistic perspective on classification and treatment rationales. Br J Pharmacol 170:712–729

    Article  CAS  Google Scholar 

  • Eom TK, Senevirathne M, Kim SK (2012) Synthesis of phenolic acid conjugated chitooligosaccharides and evaluation of their antioxidant activity. Environ Toxicol Pharmacol 34:519–527

    Google Scholar 

  • Farkona S, Diamandis EP, Blasutig IM (2016) Cancer immunotherapy: the beginning of the end of cancer? MNC Med 14:1–8

    Google Scholar 

  • Fernandes JC, Borges M, Nascimento H, Bronze-da-Rocha E, Ramos OS, Pintado ME, Malcata FX, Santos-Silva A (2011) Cytotoxicity and genotoxicity of chitooligosaccharides upon lymphocytes. Int J Biol Macromol 49:433–438

    Article  CAS  Google Scholar 

  • Fernandes JC, Sereno J, Garrido P, Parada B, Cunha MF, Reis F, Pintado ME, Santos-Silva A (2012) Inhibition of bladder tumor growth by chitooligosaccharides in an experimental carcinogenesis model. Mar Drugs 10:2661–2675

    Article  CAS  Google Scholar 

  • Hamed I, Ozogul F, Regenstein JM (2016) Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Technol 48:40–50

    Article  CAS  Google Scholar 

  • Han FS, Cui BH, You XF, Xing YF, Sun XW (2015) Anti-proliferation and radiosensitization effects of chitooligosaccharides on human lung cancer line HepG2. Asian Pac J Trop Med 8:757–761

    Article  CAS  Google Scholar 

  • Han FS, Yang SJ, Lin MB, Chen YQ, Yang P, Xu JM (2016) Chitooligosaccharides promote radiosensitivity in colon cancer line SW480. World J Gastroenterol Hepatol Endosc 22:5193

    CAS  Google Scholar 

  • Hong S, Ngo DN, Kim MM (2016) Inhibitory effect of aminoethyl-chitooligosaccharides on invasion of human fibrosarcoma cells. Environ Toxicol Pharmacol 45:309–314

    Article  CAS  Google Scholar 

  • Hu X, Chen S, Yin H, Wang Q, Duan Y, Jiang L, Zhao L (2020) Chitooligosaccharides-modified PLGA nanoparticles enhance the antitumor efficacy of AZD9291 (osimertinib) by promoting apoptosis. Int J Biol Macromol 162:262–272

    Article  CAS  Google Scholar 

  • Huang R, Mendis E, Kim SK (2005) Improvement of ACE inhibitory activity of chitooligosaccharides (COS) by carboxyl modification. Bioorg Med Chem 13:3649–3655

    Article  CAS  Google Scholar 

  • Huang R, Mendis E, Rajapakse N, Kim SK (2006) Strong electronic charge as an important factor for anticancer activity of chitooligosaccharides (COS). Life Sci 78:2399–2408

    Article  CAS  Google Scholar 

  • Huang X, Huang X, Jiang XH, Hu FQ, Du YZ, Zhu QF, Jin CS (2012) In vitro antitumour activity of stearic acid-g-chitosan oligosaccharide polymeric micelles loading podophyllotoxin. J Microencapsul 29:1–8

    Article  Google Scholar 

  • Jain KK (2005) Nanotechnology-based drug delivery for cancer. Technol Cancer Res Treatment 4:407–416

    Article  CAS  Google Scholar 

  • Jang A, Lee NY, Lee BD, Kim TH, Son JH, An BJ, Jo C (2009) Biological functions of a synthetic compound, octadeca-9, 12-dienyl-3, 4, 5-hydroxybenzoate, from gallic acid–linoleic acid ester. Food Chem 112:369–373

    Article  CAS  Google Scholar 

  • Jiang M, Zhuge X, Yang Y, Gu X, Ding F (2009) The promotion of peripheral nerve regeneration by chitooligosaccharides in the rat nerve crush injury model. Neurosci Lett 454:239–243

    Article  CAS  Google Scholar 

  • Jiang C, Wang H, Zhang X, Sun Z, Wang F, Cheng J, Xie H, Yu B, Zhou L (2014) Deoxycholic acid-modified chitooligosaccharide/mPEG-PDLLA mixed micelles loaded with paclitaxel for enhanced antitumor efficacy. Int J Pharm 475:60–68

    Article  CAS  Google Scholar 

  • Jing B, Cheng G, Li J, Wang ZA, Du Y (2019) Inhibition of liver tumor cell metastasis by partially acetylated chitosan oligosaccharide on a tumor-vessel microsystem. Mar Drugs 17:415

    Article  CAS  Google Scholar 

  • Kang HS, Kim GY, Jung I, Oh SD, Kim CH, Shim BS, Park KH, Oh SJ (2007) The effect of the compound of tomato extract to the prostatic cancer cell and the prostate of the rat model of benign prostatic hyperplasia. Korean J Pharmacogn 38:197–203

    CAS  Google Scholar 

  • Karagozlu MZ, Kim JA, Karadeniz F, Kong CS, Kim SK (2010) Anti-proliferative effect of amino derivatized chitooligosaccharides on AGS human gastric cancer cells. Process Biochem 45:1523–1528

    Article  CAS  Google Scholar 

  • Kerch G (2015) The potential of chitosan and its derivatives in prevention and treatment of age-related diseases. Mar Drugs 13:2158–2182

    Article  CAS  Google Scholar 

  • Kerch G, Sabovics M, Kruma Z, Kampuse S, Straumite E (2011) Effect of chitosan and chitooligosaccharide on vitamin C and polyphenols contents in cherries and strawberries during refrigerated storage. Eur Food Res Technol 233:351–358

    Article  CAS  Google Scholar 

  • Kim EJ, Park MK, Byun HJ, Kang GJ, Yu L, Kim HJ, Shim JG, Lee H, Lee CH (2018) YdjCchitooligosaccharide deacetylase homolog induces keratin reorganization in lung cancer cells: involvement of interaction between YDJC and CDC16. Oncotarget 9:22915

    Article  Google Scholar 

  • Kim EJ, Park MK, Kang GJ, Byun HJ, Kim HJ, Yu L, Kim B, Chae HS, Chin YW, Shim JG, Lee H (2019) YDJC induces epithelial-mesenchymal transition via escaping from interaction with CDC16 through ubiquitination of PP2A. J Oncol 2019:3542537

    Article  Google Scholar 

  • Kumara BN, Bhat SR, Prasad KS (2021) Why chitosan could be apt candidate for glaucoma drug delivery-an overview. Int J Biol Macromol 176:47–65

    Article  CAS  Google Scholar 

  • Li HF, Huang LF, Chen LH (2019) Chitooligosaccharides inhibit A549 lung cancer cell line proliferation by regulating cell autophagy. J Biol Regul Homeost Agents 33:1527–1532

    Google Scholar 

  • Li R, Lyu Y, Luo S, Wang H, Zheng X, Li L, Ao N, Zha Z (2021) Fabrication of a multi-level drug release platform with liposomes, chitooligosaccharides, phospholipids and injectable chitosan hydrogel to enhance anti-tumor effectiveness. Carbohydr Polym 269:118322

    Google Scholar 

  • Lin F, Jia XG, Lei WX, Li ZJ, Zhang TY (2009) Spectra analyses of chitosans degraded by hydrogen peroxide under optimal conditions. Spectrosc Spectr Anal 29:43–47

    Google Scholar 

  • Liu X (2020) Anti-melanoma effect of intratumoral injection of PD-L1-siRNA-loaded phenylboronic acid-modified chitooligosaccharide nanoparticles: a preliminary study. Int J Pharm Res 47:638–644

    Google Scholar 

  • Lu X, Guo H, Zhang Y (2012) Protective effects of sulphated chitooligosaccharides against hydrogen peroxide-induced damage in MIN6 cells. Int J Biol Macromol 50:50–58

    Article  CAS  Google Scholar 

  • Lu X, Guo H, Sun L, Zhang L, Zhang Y (2013) Protective effects of sulfatedchitooligosaccharides with different degrees of substitution in MIN6 cells. Int J Biol Macromol 52:92–98

    Article  CAS  Google Scholar 

  • Luo Z, Dong X, Ke Q, Duan Q, Shen L (2014) Downregulation of CD147 by chitooligosaccharide inhibits MMP-2 expression and suppresses the metastatic potential of human gastric cancer. Oncol Lett 8:361–366

    Article  CAS  Google Scholar 

  • Luo Y, Deng L, Deng QJ, Wen L (2016) Comparative study of the chitooligosaccharides effect on the proliferation inhibition and radiosensitization of three types of human gastric cancer cell line. Asian Pac J Trop Med 9:601–605

    Article  CAS  Google Scholar 

  • Manivasagan P, Oh J (2016) Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications. Int J Biol Macromol 82:315–327

    Article  CAS  Google Scholar 

  • Mitelman F, Johansson B, Mertens F (2007) The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 7:233–245

    Article  CAS  Google Scholar 

  • Mondal S, Swamy MJ (2020) Purification, biochemical/biophysical characterization and chitooligosaccharide binding to BGL24, a new PP2-type phloem exudate lectin from bottle gourd (Lagenaria siceraria). Int J Biol Macromol 164:3656–3666

    Article  CAS  Google Scholar 

  • Morris VB, Neethu S, Abraham TE, Pillai CK, Sharma CP (2009) Studies on the condensation of depolymerized chitosans with DNA for preparing chitosan-DNA nanoparticles for gene delivery applications. J Biomed Mater Res Part B Appl Biomater 89:282–292

    Article  Google Scholar 

  • Ngo DN, Qian ZJ, Je JY, Kim MM, Kim SK (2008) Aminoethyl chitooligosaccharides inhibit the activity of angiotensin converting enzyme. Process Biochem 43:119–123

    Article  CAS  Google Scholar 

  • Ngo DH, Qian ZJ, Ngo DN, Vo TS, Wijesekara I, Kim SK (2011) Gallylchitooligosaccharides inhibit intracellular free radical-mediated oxidation. Food Chem 128:974–981

    Article  CAS  Google Scholar 

  • Ngo DH, Ngo DN, Vo TS, Ryu B, Van Ta Q, Kim SK (2012) Protective effects of aminoethyl-chitooligosaccharides against oxidative stress and inflammation in murine microglial BV-2 cells. Carbohydr Polym 88:743–747

    Article  CAS  Google Scholar 

  • Ngo DH, Ngo DN, Kim SK, Vo TS (2019) Antiproliferative effect of aminoethyl-chitooligosaccharide on human lung A549 cancer cells. Biomolecules 9:195

    Article  CAS  Google Scholar 

  • Oh GW, Kim SC, Kim TH, Jung WK (2021) Characterization of an oxidized alginate-gelatin hydrogel incorporating a COS-salicylic acid conjugate for wound healing. Carbohydr Polym 252:117145

    Google Scholar 

  • De Oliveira PN, Moussa A, Milhau N, Bini RD, Prouillac C, de Oliveira BF, Dias GS, Santos IA, Morfin I, Sudre G, Alcouffe P (2020) In situ synthesis of Fe3O4 nanoparticles coated by chito-oligosaccharides: physico-chemical characterizations and cytotoxicity evaluation for biomedical applications. Nanotechnol 31:175602

    Google Scholar 

  • Ouchi T, Banba T, Matsumoto T, Suzuki S, Suzuki M (1990) Synthesis and antitumor activity of conjugates of 5-fluorouracil and chito-oligosaccharides involving a hexamethylene spacer group and carbamoyl bonds. Drug Des and Dev 6:281–287

    CAS  Google Scholar 

  • Pan Z, Cheng DD, Wei XJ, Li SJ, Guo H, Yang QC (2021) Chitooligosaccharides inhibit tumor progression and induce autophagy through the activation of the p53/mTOR pathway in osteosarcoma. Carbohydr Polym 258:117596

    Google Scholar 

  • Park BK, Kim MM (2010) Applications of chitin and its derivatives in biological medicine. Int J Mol Sci 11:5152–5164

    Article  CAS  Google Scholar 

  • Qin C, Du Y, Xiao L, Li Z, Gao X (2002) Enzymic preparation of water-soluble chitosan and their antitumor activity. Int J Biol Macromol 31:111–117

    Article  CAS  Google Scholar 

  • Qu Y, Chu BY, Peng JR, Liao JF, Qi TT, Shi K, Zhang XN, Wei YQ, Qian ZY (2015) A biodegradable thermo-responsive hybrid hydrogel: therapeutic applications in preventing the post-operative recurrence of breast cancer. NPG Asia Materials 7:e207

    Google Scholar 

  • Quan H, Zhu F, Han X, Xu Z, Zhao Y, Miao Z (2009) Mechanism of anti-angiogenic activities of chitooligosaccharides may be through inhibiting heparanase activity. Med Hypotheses 73:205–206

    Article  CAS  Google Scholar 

  • Rajapakse N, Kim MM, Mendis E, Huang R, Kim SK (2006) Carboxylatedchitooligosaccharides (CCOS) inhibit MMP-9 expression in human fibrosarcoma cells via down-regulation of AP-1. Biochimica et Biophysica Acta (BBA)-General Subjects 1760:1780–1788

    Google Scholar 

  • Rosenblum D, Joshi N, Tao W, Karp JM, Peer D (2018) Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun 9:1–2

    Article  Google Scholar 

  • Ryu B, Himaya SW, Napitupulu RJ, Eom TK, Kim SK (2012) Sulfatedchitooligosaccharide II (SCOS II) suppress collagen degradation in TNF-induced chondrosarcoma cells via NF-κB pathway. Carbohydr Res 350:55–61

    Article  CAS  Google Scholar 

  • Ryu B, Kim SY, Vo TS, Kim WS, Kim DG, Kim SK (2017) Characterization of the in vitro effects of gallic acid-grafted-chitooligosaccharides in the suppression of AGS human gastric cancer cell proliferation. RSC Adv 7:24561–24568

    Article  Google Scholar 

  • Sato K, Saimoto H, Morimoto M, Shigemasa Y (2003) Depolymerization of chitin and chitosan under hydrothermal conditions. Sen-I Gakkaishi 59:104–109

    Article  CAS  Google Scholar 

  • Schimpl M, Rush CL, Betou M, Eggleston IM, Recklies AD, Van Aalten DM (2012) Human YKL-39 is a pseudo-chitinase with retained chitooligosaccharide-binding properties. Biochem J 446:149–157

    Article  CAS  Google Scholar 

  • Shen KT, Chen MH, Chan HY, Jeng JH, Wang YJ (2009) Inhibitory effects of chitooligosaccharides on tumor growth and metastasis. Food Chem Toxicol 47:1864–1871

    Article  CAS  Google Scholar 

  • Sudhakar A (2009) History of cancer, ancient and modern treatment methods. J Cancer Sci Ther 1:1

    Article  Google Scholar 

  • Sun C, Shen C, Zhang Y, Hu C (2021) LncRNA ANRIL negatively regulated chitooligosaccharide-induced radiosensitivity in colon cancer cells by sponging miR-181a-5p. Adv Clin Exp Med 30:55–65

    Article  Google Scholar 

  • Wang Z, Zheng L, Yang S, Niu R, Chu E, Lin X (2007) N-acetylchitooligosaccharide is a potent angiogenic inhibitor both in vivo and in vitro. Biochem Biophys Res Commun 357:26–31

    Article  CAS  Google Scholar 

  • Wang SL, Lin HT, Liang TW, Chen YJ, Yen YH, Guo SP (2008) Reclamation of chitinous materials by bromelain for the preparation of antitumor and antifungal materials. Bioresour Technol 99:4386–4393

    Article  CAS  Google Scholar 

  • Wu H, Yao Z, Bai X, Du Y, Lin B (2008) Anti-angiogenic activities of chitooligosaccharides. Carbohydr Polym 73:105–110

    Article  CAS  Google Scholar 

  • Wu T, Zivanovic S, Hayes DG, Weiss J (2008) Efficient reduction of chitosan molecular weight by high-intensity ultrasound: underlying mechanism and effect of process parameters. J Agric Food Chem 56:5112–5119

    Article  CAS  Google Scholar 

  • Wu H, Yao Z, Bai X, Du Y, Ma X (2010) Chitooligosaccharides inhibit nitric oxide mediated migration of endothelial cells in vitro and tumor angiogenesis in vivo. Carbohydr Polym 82:927–932

    Article  CAS  Google Scholar 

  • Wu H, Aam BB, Wang W, Norberg AL, Sorlie M, Eijsink VG, Du Y (2012) Inhibition of angiogenesis by chitooligosaccharides with specific degrees of acetylation and polymerization. Carbohydr Polym 89:511–518

    Article  CAS  Google Scholar 

  • Wu S, Powers S, Zhu W, Hannun YA (2016) Substantial contribution of extrinsic risk factors to cancer development. Nature 529:43–47

    Article  CAS  Google Scholar 

  • Wu M, Li J, An Y, Li P, Xiong W, Li J, Yan D, Wang M, Zhong G (2019) Chitooligosaccharides prevents the development of colitis-associated colorectal cancer by modulating the intestinal microbiota and mycobiota. Front Microbiol 10:2101

    Article  Google Scholar 

  • Xie Y, Zhou N, Cao J, Ding B, Liu D, Liu J (2008) Antigrowth effects of chitosan and its derivatives on human hepatocellular carcinoma cell line SMMC7721. Chinese J Tissue Eng Res 12:4579–4582

    Google Scholar 

  • Xin C, Yao X, Du B, Yang W, Wang L, Ma L, Weng W (2019) Stearic acid-grafted chitooligosaccharidenanomicelle system with biocleavable gadolinium chelates as a multifunctional agent for tumor imaging and drug delivery. Pharm Res 36:1–4

    Article  CAS  Google Scholar 

  • Xing R, Liu S, Yu H, Guo Z, Wang P, Li C, Li Z, Li P (2005) Salt-assisted acid hydrolysis of chitosan to oligomers under microwave irradiation. Carbohydr Res 340:2150–2153

    Article  CAS  Google Scholar 

  • Xiong C, Wu H, Wei P, Pan M, Tuo Y, Kusakabe I, Du Y (2009) Potent angiogenic inhibition effects of deacetylated chitohexaose separated from chitooligosaccharides and its mechanism of action in vitro. Carbohydr Res 344:1975–1983

    Article  CAS  Google Scholar 

  • Xu W, Jiang C, Kong X, Liang Y, Rong M, Liu W (2012) Chitooligosaccharides and N-acetyl-D-glucosamine stimulate peripheral blood mononuclear cell-mediated antitumor immune responses. Mol Med Rep 6:385–390

    Article  CAS  Google Scholar 

  • Yin X, Chi Y, Guo C, Feng S, Liu J, Sun K, Wu Z (2017) Chitooligosaccharides modified reduction-sensitive liposomes: enhanced cytoplasmic drug delivery and osteosarcomas-tumor inhibition in animal models. Pharm Res 34:2172–2184

    Article  CAS  Google Scholar 

  • Yin X, Feng S, Chi Y, Liu J, Sun K, Guo C, Wu Z (2018) Estrogen-functionalized liposomes grafted with glutathione-responsive sheddable chotooligosaccharides for the therapy of osteosarcoma. Drug Deliv 25:900–908

    Article  CAS  Google Scholar 

  • Yoksan R, Akashi M, Miyata M, Chirachanchai S (2004) Optimal γ-ray dose and irradiation conditions for producing low-molecular-weight chitosan that retains its chemical structure. Radiat Res 161:471–480

    Article  CAS  Google Scholar 

  • Yuan X, Zheng J, Jiao S, Cheng G, Feng C, Du Y, Liu H (2019) A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production. Carbohydr Polym 220:60–70

    Article  CAS  Google Scholar 

  • Zhai X, Li C, Ren D, Wang J, Ma C, Abd El-Aty AM (2021) The impact of chitooligosaccharides and their derivatives on the in vitro and in vivo antitumor activity: a comprehensive review. Carbohydr Polym 266:118132

    Google Scholar 

  • Zhang J, Xia W, Liu P, Cheng Q, Tahi T, Gu W, Li B (2010) Chitosan modification and pharmaceutical/biomedical applications. Mar Drugs 8:1962–1987

    Article  CAS  Google Scholar 

  • Zhang Y, Sha W, Zhang X, Cheng M, Wu Q, Wang W, Yuan Z (2019) Zwitterionic chitooligosaccharide-modified ink-blue titanium dioxide nanoparticles with inherent immune activation for enhanced photothermal therapy. Biomater Sci 7:5027–5034

    Article  CAS  Google Scholar 

  • Zhao M, Gu L, Li Y, Chen S, You J, Fan L, Wang Y, Zhao L (2019) Chitooligosaccharides display anti-tumor effects against human cervical cancer cells via the apoptotic and autophagic pathways. Carbohydr Polym 224:115171

    Google Scholar 

  • Zhu C, Zhao M, Fan L, Cao X, Xia Q, Zhou J, Yin H, Zhao L (2021) Chitopentaose inhibits hepatocellular carcinoma by inducing mitochondrial mediated apoptosis and suppressing protective autophagy. Bioresour Bioprocess 8:1–2

    Article  CAS  Google Scholar 

  • Zimmermann S, Dziadziuszko R, Peters S (2014) Indications and limitations of chemotherapy and targeted agents in non-small cell lung cancer brain metastases. Cancer Treat Rev 40:716–722

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pavan, S.R., Venkatesan, J., Kim, SK., Prabhu, A. (2022). Anticancer Effects of Chitooligosaccharides. In: Kim, SK. (eds) Chitooligosaccharides. Springer, Cham. https://doi.org/10.1007/978-3-030-92806-3_8

Download citation

Publish with us

Policies and ethics