Skip to main content
Log in

Immunization of A4galt-deficient mice with glycosphingolipids from renal cell cancers resulted in the generation of anti-sulfoglycolipid monoclonal antibodies

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

In this study, we immunized Gb3/CD77 synthase gene (A4galt) knockout (KO) mice with glycosphingolipids (GSLs) extracted from 3 renal cell cancer (RCC) cell lines to raise monoclonal antibodies (mAbs) reactive with globo-series GSLs specifically expressed in RCCs. Although a number of mAbs reactive with globo-series GSLs were generated, they reacted with both RCC cell lines and normal kidney cells. When we analyzed recognized antigens by mAbs that were specifically reactive with RCC, but not with normal kidney cells at least on the cell surface, many of them turned out to be reactive with sulfoglycolipids. Eight out of 11 RCC-specific mAbs were reactive with SM2 alone, and the other 3 mAbs were more broadly reactive with sulfated glycolipids, i.e. SM3 and SM4 as well as SM2. In the immunohistochemistry, these anti-sulfoglycolipids mAbs showed RCC-specific reaction, with no or minimal reaction with adjacent normal tissues. Thus, immunization of A4galt KO mice with RCC-derived GSLs resulted in the generation of anti sulfated GSL mAbs, and these mAbs may be applicable for the therapeutics for RCC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Houghton, A.N., Mintzer, D., Cordon-Cardo, C., Welt, S., Fliegel, B., Vadhan, S., Carswell, E., Melamed, M.R., Oettgen, H.F., Old, L.J.: Mouse monoclonal IgG3 antibody detecting GD3 ganglioside: a phase I trial in patients with malignant melanoma. Proc. Natl. Acad. Sci. U. S. A. 82, 1242–1246 (1985)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kennett, R.H.: Hybridomas: a new dimension in biological analyses. In Vitro. 17, 1036–1050 (1981)

    Article  CAS  PubMed  Google Scholar 

  3. Nelson, P.N., Reynolds, G.M., Waldron, E.E., Ward, E., Giannopoulos, K., Murray, P.G.: Monoclonal antibodies. Mol. Pathol. 53, 111–117 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boffey, J., Nicholl, D., Wagner, E.R., Townson, K., Goodyear, C., Furukawa, K., Furukawa, K., Conner, J., Willison, H.J.: Innate murine B cells produce anti-disialosyl antibodies reactive with Campylobacter jejuni LPS and gangliosides that are polyreactive and encoded by a restricted set of unmutated V genes. J. Neuroimmunol. 152, 98–111 (2004)

    Article  CAS  PubMed  Google Scholar 

  5. Lunn, M.P., Johnson, L.A., Fromholt, S.E., Itonori, S., Huang, J., Vyas, A.A., Hildreth, J.E., Griffin, J.W., Schnaar, R.L., Sheikh, K.A.: High-affinity anti-ganglioside IgG antibodies raised in complex ganglioside knockout mice: reexamination of GD1a immunolocalization. J. Neurochem. 75, 404–412 (2000)

    Article  CAS  PubMed  Google Scholar 

  6. Boffey, J., Odaka, M., Nicoll, D., Wagner, E.R., Townson, K., Bowes, T., Conner, J., Furukawa, K., Willison, H.J.: Characterisation of the immunoglobulin variable region gene usage encoding the murine anti-ganglioside antibody repertoire. J. Neuroimmunol. 165, 92–103 (2005)

    Article  CAS  PubMed  Google Scholar 

  7. Kondo, Y., Tokuda, N., Furukawa, K., Ando, R., Uchikawa, M., Zhang, Q., Xiaoyan, F., Furukawa, K.: Efficient generation of useful monoclonal antibodies reactive with globotriaosylceramide using knockout mice lacking Gb3/CD77 synthase. Glycoconj. J. 28, 371–384 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. Lingwood, C.A.: Role of verotoxin receptors in pathogenesis. Trends Microbiol. 4, 147–153 (1996)

    Article  CAS  PubMed  Google Scholar 

  9. Fujii, Y., Numata, S., Nakamura, Y., Honda, T., Furukawa, K., Urano, T., Wiels, J., Uchikawa, M., Ozaki, N., Matsuo, S., Sugiura, Y., Furukawa, K.: Murine glycosyltransferases responsible for the expression of globo-series glycolipids: cDNA structures, mRNA expression, and distribution of their products. Glycobiology 15, 1257–1267 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. Okuda, T., Tokuda, N., Numata, S., Ito, M., Ohta, M., Kawamura, K., Wiels, J., Urano, T., Tajima, O., Furukawa, K., Furukawa, K.: Targeted disruption of Gb3/CD77 synthase gene resulted in the complete deletion of globo-series glycosphingolipids and loss of sensitivity to verotoxins. J. Biol. Chem. 281, 10230–10235 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. Kondo, Y., Ikeda, K., Tokuda, N., Nishitani, C., Ohto, U., Akashi-Takamura, S., Ito, Y., Uchikawa, M., Kuroki, Y., Taguchi, R., Miyake, K., Zhang, Q., Furukawa, K., Furukawa, K.: TLR4-MD-2 complex is negatively regulated by an endogenous ligand, globotetraosylceramide. Proc. Natl. Acad. Sci. U. S. A. 110, 4714–4719 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kasai, K., Galton, J., Terasaki, P.I., Wakisaka, A., Kawahara, M., Root, T., Hakomori, S.I.: Tissue distribution of the Pk antigen as determined by a monoclonal antibody. J. Immunogenet. 12, 213–220 (1985)

    Article  CAS  PubMed  Google Scholar 

  13. Nudelman, E., Kannagi, R., Hakomori, S., Parsons, M., Lipinski, M., Wiels, J., Fellous, M., Tursz, T.: A glycolipid antigen associated with Burkitt lymphoma defined by a monoclonal antibody. Science 220, 509–511 (1983)

    Article  CAS  PubMed  Google Scholar 

  14. Nudelman, E., Hakomori, S., Kannagi, R., Levery, S., Yeh, M.Y., Hellstrom, K.E., Hellstrom, I.: Characterization of a human melanoma-associated ganglioside antigen defined by a monoclonal antibody, 4.2. J. Biol. Chem. 257, 12752–12756 (1982)

    CAS  PubMed  Google Scholar 

  15. Falguieres, T., Maak, M., von Weyhern, C., Sarr, M., Sastre, X., Poupon, M.F., Robine, S., Johannes, L., Janssen, K.P.: Human colorectal tumors and metastases express Gb3 and can be targeted by an intestinal pathogen-based delivery tool. Mol. Cancer Ther. 7, 2498–2508 (2008)

    Article  CAS  PubMed  Google Scholar 

  16. Kovbasnjuk, O., Mourtazina, R., Baibakov, B., Wang, T., Elowsky, C., Choti, M.A., Kane, A., Donowitz, M.: The glycosphingolipid globotriaosylceramide in the metastatic transformation of colon cancer. Proc. Natl. Acad. Sci. U. S. A. 102, 19087–19092 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Okada, M., Itoh, M., Haraguchi, M., Okajima, T., Inoue, M., Ohishi, H., Matsuda, Y., Iwamoto, T., Kawano, T., Fukumoto, S., Miyazaki, H., Furukawa, K., Aizawa, S., Furukawa, K.: b-series ganglioside deficiency exhibits no definite changes in the neurogenesis and the sensitivity to Fas-mediated apoptosis, but impairs regeneration of the lesioned hypoglossal nerve. J. Biol. Chem. 277, 1633–1636 (2002)

  18. Senda, M., Ito, A., Tsuchida, A., Hagiwara, T., Kaneda, T., Nakamura, Y., Kasama, K., Kiso, M., Yoshikawa, K., Katagiri, Y., Ono, Y., Ogiso, M., Urano, T., Furukawa, K., Oshima, S., Furukawa, K.: Identification and expression of a sialyltransferase responsible for the synthesis of disialylgalactosylgloboside in normal and malignant kidney cells: downregulation of ST6GalNAc VI in renal cancers. Biochem. J. 402, 459–470 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Niimura, Y., Ishizuka, I.: Isolation and identification of nine sulfated glycosphingolipids containing two unique sulfated gangliosides from the African green monkey kidney cells, Verots S3, and their possible metabolic pathways. Glycobiology 16, 729–735 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. Furukawa, K., Mattes, M.J., Lloyd, K.O.: A1 and A2 erythrocytes can be distinguished by reagents that do not detect structural differences between the two cell types. J. Immunol. 135, 4090–4094 (1985)

    CAS  PubMed  Google Scholar 

  21. Ikeda, K., Taguchi, R.: Highly sensitive localization analysis of gangliosides and sulfatides including structural isomers in mouse cerebellum sections by combination of laser microdissection and hydrophilic interaction liquid chromatography/electrospray ionization mass spectrometry with theoretically expanded multiple reaction monitoring. Rapid Commun. Mass Spectrom. 24, 2957–2965 (2010)

    Article  CAS  PubMed  Google Scholar 

  22. Satoh, M., Nejad, F.M., Ohtani, H., Ito, A., Ohyama, C., Saito, S., Orikasa, S., Hakomori, S.: Association of renal cell carcinoma antigen, disialylgalactosylgloboside, with c-Src and Rho A in clustered domains at the surface membrane. Int. J. Oncol. 16, 529–536 (2000)

    CAS  PubMed  Google Scholar 

  23. Satoh, M., Handa, K., Saito, S., Tokuyama, S., Ito, A., Miyao, N., Orikasa, S., Hakomori, S.: Disialosyl galactosylgloboside as an adhesion molecule expressed on renal cell carcinoma and its relationship to metastatic potential. Cancer Res. 56, 1932–1938 (1996)

    CAS  PubMed  Google Scholar 

  24. Wiels, J., Holmes, E.H., Cochran, N., Tursz, T., Hakomori, S.: Enzymatic and organizational difference in expression of a Burkitt lymphoma-associated antigen (globotriaosylceramide) in Burkitt lymphoma and lymphoblastoid cell lines. J. Biol. Chem. 259, 14783–14787 (1984)

    CAS  PubMed  Google Scholar 

  25. Mangeney, M., Richard, Y., Coulaud, D., Tursz, T., Wiels, J.: CD77: an antigen of germinal center B cells entering apoptosis. Eur. J. Immunol. 21, 1131–1140 (1991)

    Article  CAS  PubMed  Google Scholar 

  26. Yoda, Y., Gasa, S., Makita, A., Fujioka, Y., Kikuchi, Y., Hashimoto, M.: Glycolipids in human lung carcinoma of histologically different types. J. Natl. Cancer Inst. 63, 1153–1160 (1979)

    CAS  PubMed  Google Scholar 

  27. Osawa, H., Sugano, K., Igari, T., Tai, T., Iwamori, M., Kawakami, M.: Immunohistochemical study of sulfatide expression in gastric carcinoma: alteration of sulfatide expression. J. Clin. Gastroenterol. 25(Suppl 1), S135–140 (1997)

    Article  PubMed  Google Scholar 

  28. Morichika, H., Hamanaka, Y., Tai, T., Ishizuka, I.: Sulfatides as a predictive factor of lymph node metastasis in patients with colorectal adenocarcinoma. Cancer 78, 43–47 (1996)

    Article  CAS  PubMed  Google Scholar 

  29. Sugiyama, T., Miyazawa, M., Mikami, M., Goto, Y., Nishijima, Y., Ikeda, M., Hirasawa, T., Muramatsu, T., Takekoshi, S., Iwamori, M.: Enhanced expression of sulfatide, a sulfated glycolipid, in well-differentiated endometrial adenocarcinoma. Int. J. Gynecol. Cancer 22, 1192–1197 (2012)

    Article  PubMed  Google Scholar 

  30. Sakakibara, N., Gasa, S., Kamio, K., Makita, A., Koyanagi, T.: Association of elevated sulfatides and sulfotransferase activities with human renal cell carcinoma. Cancer Res. 49, 335–339 (1989)

    CAS  PubMed  Google Scholar 

  31. Kobayashi, T., Honke, K., Kamio, K., Sakakibara, N., Gasa, S., Miyao, N., Tsukamoto, T., Ishizuka, I., Miyazaki, T., Makita, A.: Sulfolipids and glycolipid sulfotransferase activities in human renal cell carcinoma cells. Br. J. Cancer 67, 76–80 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Honke, K., Tsuda, M., Hirahara, Y., Ishii, A., Makita, A., Wada, Y.: Molecular cloning and expression of cDNA encoding human 3′-phosphoadenyl- ylsulfate:galactosyl- ceramide 3′-sulfotransferase. J. Biol. Chem. 272, 4864–4868 (1997)

    Article  CAS  PubMed  Google Scholar 

  33. Roberts, D.D., Wewer, U.M., Liotta, L.A., Ginsburg, V.: Laminin-dependent and laminin-independent adhesion of human melanoma cells to sulfatides. Cancer Res. 48, 3367–3373 (1988)

    CAS  PubMed  Google Scholar 

  34. Roberts, D.D.: Interactions of thrombospondin with sulfated glycolipids and proteoglycans of human melanoma cells. Cancer Res. 48, 6785–6793 (1988)

    CAS  PubMed  Google Scholar 

  35. Incardona, F., Calvo, F., Fauvel-Lafeve, F., Legrand, Y., Legrand, C.: Involvement of thrombospondin in the adherence of human breast-adenocarcinoma cells: a possible role in the metastatic process. Int. J. Cancer 55, 471–477 (1993)

    Article  CAS  PubMed  Google Scholar 

  36. Garcia, J., Callewaert, N., Borsig, L.: P-selectin mediates metastatic progression through binding to sulfatides on tumor cells. Glycobiology 17, 185–196 (2007)

    Article  CAS  PubMed  Google Scholar 

  37. Kobayashi, T., Honke, K., Miyazaki, T., Matsumoto, K., Nakamura, T., Ishizuka, I., Makita, A.: Hepatocyte growth factor specifically binds to sulfoglycolipids. J. Biol. Chem. 269, 9817–9821 (1994)

    CAS  PubMed  Google Scholar 

  38. Sandhoff, R., Grieshaber, H., Djafarzadeh, R., Sijmonsma, T.P., Proudfoot, A.E., Handel, T.M., Wiegandt, H., Nelson, P.J., Grone, H.J.: Chemokines bind to sulfatides as revealed by surface plasmon resonance. Biochim. Biophys. Acta 1687, 52–63 (2005)

    Article  CAS  PubMed  Google Scholar 

  39. Popovic, Z.V., Sandhoff, R., Sijmonsma, T.P., Kaden, S., Jennemann, R., Kiss, E., Tone, E., Autschbach, F., Platt, N., Malle, E., Grone, H.J.: Sulfated glycosphingolipid as mediator of phagocytosis: SM4s enhances apoptotic cell clearance and modulates macrophage activity. J. Imunol. 179, 6770–6782 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank T. Mizuno and Y. Nakayasu for technical assistance.

This study was supported by a Grant-in-Aid from the New Energy and Industrial Technology Development Organization of Japan (NEDO), and grants-in-Aid for Scientific Research B (15H04696) and Grant-in-aid for Scientific Research on Innovative Areas (23110008) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Furukawa.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table S1

(PDF 147 kb)

Supplemental Table S2

(PDF 39 kb)

Supplemental Table S3

(PDF 72 kb)

Supplemental Fig. S1

Immunization schedule of mice. A4galt KO mice were immunized intravenously or intraperitoneally with glycolipids derived from RCC cell lines as described in “Materials and methods”. Immunization times of mice used for the fusion were 11~14. Serum reactivity check by IF was performed at appropriate time points. (PDF 40 kb)

Supplemental Fig. S2

Specificity of mAb F722-3 analyzed by TLC-immunostaining. TLC-immunostaining was performed with mAb 722-3 (hybridoma supernatant at 1:2 dilution) as described in “Materials and Methods”. BBG, bovine brain gangliosides as standards. SM2 was prepared from African green monkey kidney cells, Verots S3 and its structure was defined as described in Ref. 19. (PDF 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ando, R., Tokuda, N., Yamamoto, T. et al. Immunization of A4galt-deficient mice with glycosphingolipids from renal cell cancers resulted in the generation of anti-sulfoglycolipid monoclonal antibodies. Glycoconj J 33, 169–180 (2016). https://doi.org/10.1007/s10719-016-9654-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9654-6

Keywords

Navigation