Skip to main content
Log in

Cell surface and in vivo interaction of dendrimeric N-glycoclusters

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

While many examples have been reported that glycoclusters interact with target lectins more strongly than single molecules of glycans, through multivalency effects, literature examples to support lectin interactions/modulations on cell surface and in live animals is quite rare. Our N-glycoclusters, which were efficiently prepared by immobilizing 16 molecules of the asparagine-linked glycans (N-glycans) onto a lysine-based dendron template through histidine-mediated Huisgen cycloaddition, were shown to efficiently detect platelet endothelial cell adhesion molecule (PECAM) on human umbilical vein endothelial cells (HUVEC) as a α(2-6)-sialylated oligosaccharides recognizing lectin. Furthermore, the identity of the N-glycans on our N-glycoclusters allowed control over organ-selective accumulation and serum clearance properties when intravenously injected into mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kamerling, J.P., Boons, G.-J., Lee, Y.C., Suzuki, A., Taniguchi, N., Voragen, A.G.J. (eds.): Analysis of Glycans, Polysaccharide Functional Properties & Biochemistry of Glycoconjugate Glycans, Carbohydrate-mediated Interactions. In: Comprehensive Glycoscience, From Chemistry to Systems Biology, Vol II & III. Elsevier, UK (2007)

  2. Rabinovich, G.A., Toscano, M.A.: Box 1 | Galectins in host–pathogen interactions. Nat. Rev. Immunol. 9, 338–352 (2009)

    Article  CAS  PubMed  Google Scholar 

  3. Davicino, R.C., Eliçabe, R.J., Di Genaro, M.S., Rabinovich, G.A.: Coupling pathogen recognition to innate immunity through glycan-dependent mechanisms. Int. Immunopharmacol. 11, 1457–1463 (2011)

    Article  CAS  PubMed  Google Scholar 

  4. Dam, T.K., Brewer, C.F.: Lectins as pattern recognition molecules: the effects of epitope density in innate immunity. Glycobiology 20, 270–279 (2010)

    Article  CAS  PubMed  Google Scholar 

  5. Roy, R., Beak, M.-G.: Glycodendrimers: novel glycotope isosteres unmasking sugar coding. Case study with T-antigen markers from breast cancer MUC1 glycoprotein. Rev. Mol. Biotechnol. 90, 291–309 (2002)

    Article  CAS  Google Scholar 

  6. Leeuwenburgh, M.A., van der Marel, G.A., Overkleeft, H.S.: Olefin metathesis in glycobiology: new routes towards diverse neoglycoconjugates. Curr. Opin. Chem. Biol. 7, 757–765 (2003)

    Article  CAS  PubMed  Google Scholar 

  7. Renaudet, O.: Recent advances cyclopeptide-based glycoclusters. Mini-Rev. Org. Chem. 5, 274–286 (2008)

    Article  CAS  Google Scholar 

  8. Chabre, Y.M., Roy, R.: Recent trend in glycodendrimer syntheses and applications. Curr. Top. Med. Chem. 8, 1237–1285 (2008)

    Article  CAS  PubMed  Google Scholar 

  9. Chabre, Y.M., Roy, R.: Design and creativity in synthesis of multivalent neoglycoconjugates. In: Advances in Carbohydrate Chemistry and Biochemistry, 63, 165–393, Elsevier, UK (2010)

  10. Lee, R.T., Lee, Y.C.: Affinity enhancement by multivalent lectin-carbohydrate interaction. Glycoconjugate J. 17, 543–551 (2000)

    Article  CAS  Google Scholar 

  11. Lundquist, J.J., Toone, E.J.: The cluster glycoside effect. Chem. Rev. 102, 555–578 (2002)

    Article  CAS  PubMed  Google Scholar 

  12. Tanaka, K., Siwu, E.R.O., Minami, K., Hasegawa, K., Nozaki, S., Kanayama, Y., Koyama, K., Chen, W.C., Paulson, J.C., Watanabe, Y., Fukase, K.: Noninvasive imaging of dendrimer-type N-glycan clusters: in vivo dynamics dependence on oligosaccharides structure. Angew. Chem. Int. Ed. 49, 8195–8200 (2010)

    Article  CAS  Google Scholar 

  13. Kitazume, S., Imamaki, R., Kurimoto, A., Ogawa, K., Kato, M., Yamaguchi, Y., Tanaka, K., Ishida, H., Ando, H., Kiso, M., Hashii, N., Kawasaki, N., Taniguchi, N.: Interaction of platelet endothelial cell adhesion molecule (PECAM) with α 2,6-sialylated glycan regulates its cell surface residency and anti-apoptotic role. J. Biol. Chem. 289, 27604–27613 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Tanaka, K., Masuyama, T., Hasegawa, K., Tahara, T., Mizuma, H., Wada, Y., Watanabe, Y., Fukase, K.: A submicrogram-scale protocol for biomolecule-based PET imaging via rapid 6π-azaelectrocyclization: first visualization of sialic acid-dependent circulatory residence of glycoproteins. Angew. Chem. Int. Ed. 47, 102–105 (2008)

    Article  CAS  Google Scholar 

  15. Tanaka, K., Fukase, K.: PET (positron emission tomography) imaging of biomolecules using metal/DOTA complexes: a new collaborative challenge by chemists, biologists, and physicians for future diagnostics and exploration of in vivo dynamics. Org. Biomol. Chem. 6, 815–828 (2008)

    Article  CAS  PubMed  Google Scholar 

  16. Tanaka, K., Kageyama, C., Fukase, K.: Acceleration of Cu(I)-mediated Huisgen 1,3-Dipolar Cycloaddition by Histidine Derivatives. Tetrahedron Lett. 48, 6475–6479 (2007)

    Article  CAS  Google Scholar 

  17. Privratsky, J.R., Newman, D.K., Newman, P.J.: PECAM-1: conflicts of interest in inflammation. Life Sci. 87, 69–82 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Wong, C.W.Y., Wiedle, G., Ballestrem, C., Wehrle-Haller, B., Etteldorf, S., Bruckner, M., Engelhardt, B., Gisler, R.H., Imhof, B.A.: PECAM-1/CD31 trans-homophilic binding at the intercellular junctions is independent of its cytoplasmic domain; evidence for heterophilic interaction with integrin αvβ3 in Cis. Mol. Biol. Cell 11, 3109–3121 (2000)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Newton, J.P., Buckley, C.D., Jones, E.Y., Simmons, D.L.: Residues on both faces of the first immunoglobulin fold contribute to homophilic binding sites of PECAM-1/CD31. J. Biol. Chem. 272, 20555–20563 (1997)

    Article  CAS  PubMed  Google Scholar 

  20. Bird, I.N., Taylor, V., Newton, J.P., Spragg, J.H., Simmons, D.L., Buckley, C.D.: Homophilic PECAM-1(CD31) interactions prevent endothelial cell apoptosis but do not support cell spreading or migration. J. Cell Sci. 112, 1989–1997 (1999)

    CAS  PubMed  Google Scholar 

  21. Kitazume, S., Imamaki, R., Ogawa, K., Komi, Y., Futakawa, S., Kojima, S., Hashimoto, Y., Marth, J.D., Paulson, J.C., Taniguchi, N.: α2,6-sialic acid on platelet endothelial cell adhesion molecule (PECAM) regulates its homophilic interactions and downstream antiapoptotic signaling. J. Biol. Chem. 285, 6515–6521 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Vyas, S.P., Singh, A., Sihorkar, V.: Ligand-receptor-mediated drug delivery: an emerging paradigm in cellular drug targeting. Crit. Rev. Ther. Drug Carrier Syst. 18, 1–76 (2001)

    Article  CAS  PubMed  Google Scholar 

  23. Willis, M., Forssen, E.: Ligand-targeted liposomes. Adv. Drug Deliv. Rev. 29, 249–271 (1998)

    Article  PubMed  Google Scholar 

  24. Fukase, K., Tanaka, K.: Bio-imaging and cancer targeting with glycoproteins and N-glycans. Curr. Opin. Chem. Biol. 16, 614–621 (2012). and references cited therein

    Article  CAS  PubMed  Google Scholar 

  25. Ogura, A., Kurbangalieva, A., Tanaka, K.: In vivo kinetics and biodistribution analysis of neoglycoproteins: effects of chemically introduced glycans on proteins. Glycoconj. J. 31, 273–279 (2014)

    Article  CAS  PubMed  Google Scholar 

  26. Ogura, A., Kurbangalieva, A., Tanaka, K.: Chemical glycan conjugation controls the biodistribution and kinetics of proteins in live animals. Mini Rev. Med. Chem. 14, 1072–1077 (2014)

    Article  CAS  Google Scholar 

  27. André, S., Unverzagt, C., Kojima, S., Dong, X., Fink, C., Kayser, K., Gabius, H.J.: Neoglycoproteins with the synthetic complex biantennary nonasaccharide or its alpha 2,3/alpha 2,6-sialylated derivatives: their preparation, assessment of their ligand properties for purified lectins, for tumor cells in vitro, and in tissue sections, and their biodistribution in tumor-bearing mice. Bioconjug. Chem. 8, 845–855 (1997)

    Article  PubMed  Google Scholar 

  28. Unverzagt, C., André, S., Seifert, J., Kojima, S., Fink, C., Srikrishna, G., Freeze, H., Kayser, K., Gabius, H.J.: Structure-activity profiles of complex biantennary glycans with core fucosylation and with/without additional alpha 2,3/alpha 2,6 sialylation: synthesis of neoglycoproteins and their properties in lectin assays, cell binding, and organ uptake. J. Med. Chem. 45, 478–491 (2002)

    Article  CAS  PubMed  Google Scholar 

  29. Hirai, M., Minematsu, H., Kondo, N., Oie, K., Igarashi, K., Yamazaki, N.: Accumulation of liposome with Sialyl Lewis X to inflammation and tumor region: application to in vivo bio-imaging. Biochem. Biophys. Res. Commun. 353, 553–558 (2007)

    Article  CAS  PubMed  Google Scholar 

  30. Chen, W.C., Completo, G.C., Sigal, D.S., Crocker, P.R., Saven, A., Paulson, J.C.: In vivo targeting of B-cell lymphoma with glycan ligands of CD22. Blood 115, 4778–4786 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Ikehara, Y., Niwa, T., Biao, L., Ikehara, S.K., Hohashi, N., Kobayashi, T., Shimizu, Y., Kojima, N., Nakanishi, H.: A carbohydrate recognition-based drug delivery and controlled release system using intraperitoneal macrophages as a cellular vehicle. Cancer Res. 66, 8740–8748 (2006)

    Article  CAS  PubMed  Google Scholar 

  32. Serres, S., Anthony, D.C., Jiang, Y., Broom, K.A., Campbell, S.J., Tyler, D.J., van Kasteren, S.I., Davis, B.G., Sibson, N.R.: Systemic inflammatory response reactivates immune-mediated lesions in rat brain. J. Neurosci. 29, 4820–4828 (2009)

    Article  CAS  PubMed  Google Scholar 

  33. van Kasteren, S.I., Campbell, S.J., Serres, S., Anthony, D.C., Sibson, N.R., Davis, B.G.: Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease. Proc. Natl. Acad. Sci. U. S. A. 106, 18–23 (2009)

    Article  PubMed Central  PubMed  Google Scholar 

  34. Kikkeri, R., Lepenies, B., Adibekian, A., Laurino, P., Seeberger, P.H.: In vitro imaging and in vivo liver targeting with carbohydrate capped quantum dots. J. Am. Chem. Soc. 131, 2110–2112 (2009)

    Article  CAS  PubMed  Google Scholar 

  35. Morell, A.G., Irvine, R.A., Sternlieb, I., Scheinberg, I.H., Ashwell, G.: Physical and chemical studies on ceruloplasmin. V. Metabolic studies on sialic acid-free ceruloplasmin in vivo. J. Biol. Chem. 243, 155–159 (1968)

    CAS  PubMed  Google Scholar 

  36. Tozawa, R., Ishibashi, S., Osuga, J., Yamamoto, K., Yagyu, H., Ohashi, K., Tamura, Y., Yahagi, N., Iizuka, Y., Okazaki, H., Harada, K., Gotoda, T., Shimano, H., Kimura, S., Nagai, R., Yamada, N.: Asialoglycoprotein receptor deficiency in mice lacking the mafor receptor subunit: its obligate requirement for the stable expression of oligomeric receptor. J. Biol. Chem. 276, 12624–12628 (2001)

    Article  CAS  PubMed  Google Scholar 

  37. Nieda, M., Kikuchi, A., Nicol, A., Koezuka, Y., Ando, Y., Ishihara, S., Lapteva, N., Yabe, T., Tokunaga, K., Tadokoro, K., Juji, T.: Dendritic cells rapidly undergo apoptosis in vitro following culture with activated CD4+ Vα24 natural killer T cells expressing CD40L. Immunology 103, 137–145 (2001)

    Article  Google Scholar 

  38. Crocker, P.R., Varki, A.: Siglecs, sialic acids and innate immunity. Trends Immunol. 22, 337–342 (2001)

    Article  CAS  PubMed  Google Scholar 

  39. Park, E.I., Mi, Y., Unverzagt, C., Gabius, H.-J., Baenziger, J.U.: The asialoglycoprotein receptor clears glycoconjugates terminating with sialic acidα2,6GalNAc. Proc. Natl. Acad. Sci. U. S. A. 102, 17125–17129 (2005)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science, No. 23681047, 25560410, 26560438, and 26870859; by a Research Grant from the Mizutani Foundation for Glycoscience; and by a MEXT Grant-in-Aid for Scientific Research (C) (No. 25430122) and on Innovative Areas “Chemical Biology of Natural Products: Target ID and Regulation of Bioactivity” (No. 26102743). This work was also performed under the Russian Government Program of Competitive Growth of Kazan Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsunori Tanaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taichi, M., Kitazume, S., Vong, K. et al. Cell surface and in vivo interaction of dendrimeric N-glycoclusters. Glycoconj J 32, 497–503 (2015). https://doi.org/10.1007/s10719-015-9594-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-015-9594-6

Keywords

Navigation