Skip to main content
Log in

Cellular metabolism of unnatural sialic acid precursors

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Carbohydrates, in addition to their metabolic functions, serve important roles as receptors, ligands, and structural molecules for diverse biological processes. Insight into carbohydrate biology and mechanisms has been aided by metabolic oligosaccharide engineering (MOE). In MOE, unnatural carbohydrate analogs with novel functional groups are incorporated into cellular glycoconjugates and used to probe biological systems. While MOE has expanded knowledge of carbohydrate biology, limited metabolism of unnatural carbohydrate analogs restricts its use. Here we assess metabolism of SiaDAz, a diazirine-modified analog of sialic acid, and its cell-permeable precursor, Ac4ManNDAz. We show that the efficiency of Ac4ManNDAz and SiaDAz metabolism depends on cell type. Our results indicate that different cell lines can have different metabolic roadblocks in the synthesis of cell surface SiaDAz. These findings point to roles for promiscuous intracellular esterases, kinases, and phosphatases during unnatural sugar metabolism and provide guidance for ways to improve MOE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Varki, A.: Sialic acids in human health and disease. Trends Mol. Med. 14, 351–360 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Varki, A.: Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 446, 1023–1029 (2007)

    Article  CAS  PubMed  Google Scholar 

  3. Du, J., Meledeo, M.A., Wang, Z., Khanna, H.S., Paruchuri, V.D.P., Yarema, K.J.: Metabolic glycoengineering: sialic acid and beyond. Glycobiology 19, 1382–1401 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Dube, D., Bertozzi, C.: Metabolic oligosaccharide engineering as a tool for glycobiology. Curr. Opin. Chem. Biol. 7, 616–625 (2003)

    Article  CAS  PubMed  Google Scholar 

  5. Kayser, H., Zeitler, R., Kannicht, C., Grunow, D., Nuck, R., Reutter, W.: Biosynthesis of a nonphysiological sialic acid in different rat organs, using N-propanoyl-D-hexosamines as precursors. J. Biol. Chem. 267, 16934–16938 (1992)

    CAS  PubMed  Google Scholar 

  6. Luchansky, S.J., Goon, S., Bertozzi, C.R.: Expanding the diversity of unnatural cell-surface sialic acids. Chembiochem 5, 371–374 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. Han, S., Collins, B.E., Bengtson, P., Paulson, J.C.: Homomultimeric complexes of CD22 in B cells revealed by protein-glycan cross-linking. Nat. Chem. Biol. 1, 93–97 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. Tanaka, Y., Kohler, J.J.: Photoactivatable crosslinking sugars for capturing glycoprotein interactions. J. Am. Chem. Soc. 130, 3278–3279 (2008)

    Article  CAS  PubMed  Google Scholar 

  9. Feng, L., Hong, S., Rong, J., You, Q., Dai, P., Huang, R., Tan, Y., Hong, W., Xie, C., Zhao, J., Chen, X.: Bifunctional unnatural sialic acids for dual metabolic labeling of cell-surface sialylated glycans. J. Am. Chem. Soc. 135, 9244–9247 (2013)

    Article  CAS  PubMed  Google Scholar 

  10. Pham, N.D., Parker, R.B., Kohler, J.J.: Photocrosslinking approaches to interactome mapping. Curr. Opin. Chem. Biol. 17, 90–101 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Ramya, T.N.C., Weerapana, E., Liao, L., Zeng, Y., Tateno, H., Liao, L., Yates, J.R., Cravatt, B.F., Paulson, J.C.: In situ trans ligands of CD22 identified by glycan-protein photocross-linking-enabled proteomics. Mol. Cell. Proteomics 9, 1339–1351 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Jones, M.B., Teng, H., Rhee, J.K., Lahar, N., Baskaran, G., Yarema, K.J.: Characterization of the cellular uptake and metabolic conversion of acetylated N-acetylmannosamine (ManNAc) analogues to sialic acids. Biotechnol. Bioeng. 85, 394–405 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. Sarkar, A.K., Fritz, T.A., Taylor, W.H., Esko, J.D.: Disaccharide uptake and priming in animal cells: inhibition of sialyl Lewis X by acetylated Gal beta 1–>4GlcNAc beta-O-naphthalenemethanol. Proc. Natl. Acad. Sci. U. S. A. 92, 3323–3327 (1995)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lemieux, G.A., Yarema, K.J., Jacobs, C.L., Bertozzi, C.R.: Exploiting differences in sialoside expression for selective targeting of MRI contrast reagents. J. Am. Chem. Soc. 121, 4278–4279 (1999)

    Article  CAS  Google Scholar 

  15. Jacobs, C.L., Yarema, K.J., Mahal, L.K., Nauman, D.A., Charters, N.W., Bertozzi, C.R.: Metabolic labeling of glycoproteins with chemical tags through unnatural sialic acid biosynthesis. Meth. Enzymol. 327, 260–275 (2000)

    Article  CAS  PubMed  Google Scholar 

  16. Sampathkumar, S.-G., Jones, M.B., Yarema, K.J.: Metabolic expression of thiol-derivatized sialic acids on the cell surface and their quantitative estimation by flow cytometry. Nat. Protoc. 1, 1840–1851 (2006)

    Article  CAS  PubMed  Google Scholar 

  17. Almaraz, R.T., Aich, U., Khanna, H.S., Tan, E., Bhattacharya, R., Shah, S., Yarema, K.J.: Metabolic oligosaccharide engineering with N-acyl functionalized ManNAc analogs: cytotoxicity, metabolic flux, and glycan-display considerations. Biotechnol. Bioeng. 109, 992–1006 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Mantey, L.R., Keppler, O.T., Pawlita, M., Reutter, W., Hinderlich, S.: Efficient biochemical engineering of cellular sialic acids using an unphysiological sialic acid precursor in cells lacking UDP-N-acetylglucosamine 2-epimerase. FEBS Lett. 503, 80–84 (2001)

    Article  CAS  PubMed  Google Scholar 

  19. Bond, M.R., Zhang, H., Vu, P.D., Kohler, J.J.: Photocrosslinking of glycoconjugates using metabolically incorporated diazirine-containing sugars. Nat. Protoc. 4, 1044–1063 (2009)

    Article  CAS  PubMed  Google Scholar 

  20. Zhan, X., Shi, X., Zhang, Z., Chen, Y., Wu, J.I.: Dual role of Brg chromatin remodeling factor in Sonic hedgehog signaling during neural development. Proc. Natl. Acad. Sci. U. S. A. 108, 12758–12763 (2011)

    Article  PubMed Central  PubMed  Google Scholar 

  21. Bond, M.R., Zhang, H., Kim, J., Yu, S.-H., Yang, F., Patrie, S.M., Kohler, J.J.: Metabolism of diazirine-modified N-acetylmannosamine analogues to photo-cross-linking sialosides. Bioconjug Chem. 22, 1811–1823 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Dettmer, K., Nürnberger, N., Kaspar, H., Gruber, M.A., Almstetter, M.F., Oefner, P.J.: Metabolite extraction from adherently growing mammalian cells for metabolomics studies: optimization of harvesting and extraction protocols. Anal. Bioanal. Chem. 399, 1127–1139 (2011)

    Article  CAS  PubMed  Google Scholar 

  23. Tomiya, N., Ailor, E., Lawrence, S.M., Betenbaugh, M.J., Lee, Y.C.: Determination of nucleotides and sugar nucleotides involved in protein glycosylation by high-performance anion-exchange chromatography: sugar nucleotide contents in cultured insect cells and mammalian cells. Anal. Biochem. 293, 129–137 (2001)

    Article  CAS  PubMed  Google Scholar 

  24. Yu, S.-H., Boyce, M., Wands, A.M., Bond, M.R., Bertozzi, C.R., Kohler, J.J.: Metabolic labeling enables selective photocrosslinking of O-GlcNAc-modified proteins to their binding partners. Proc. Natl. Acad. Sci. U. S. A. 109, 4834–4839 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Laxman, S., Sutter, B.M., Wu, X., Kumar, S., Guo, X., Trudgian, D.C., Mirzaei, H., Tu, B.P.: Sulfur amino acids regulate translational capacity and metabolic homeostasis through modulation of tRNA thiolation. Cell 154, 416–429 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Tu, B.P., Mohler, R.E., Liu, J.C., Dombek, K.M., Young, E.T., Synovec, R.E., McKnight, S.L.: Cyclic changes in metabolic state during the life of a yeast cell. Proc. Natl. Acad. Sci. U. S. A. 104, 16886–16891 (2007)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Bond, M.R., Whitman, C.M., Kohler, J.J.: Metabolically incorporated photocrosslinking sialic acid covalently captures a ganglioside-protein complex. Mol Biosyst. 6, 1796–1799 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Keppler, O.T., Hinderlich, S., Langner, J., Schwartz-Albiez, R., Reutter, W., Pawlita, M.: UDP-GlcNAc 2-epimerase: a regulator of cell surface sialylation. Science 284, 1372–1376 (1999)

    Article  CAS  PubMed  Google Scholar 

  29. Dallolio, F., Chiricolo, M., Lollini, P., Lau, J.T.Y.: Human colon cancer cell lines permanently expressing α2,6-sialylated sugar chains by transfection with rat β-galactoside α2,6 sialyltransferase cDNA. Biochem. Biophys. Res. Comm. 211, 554–561 (1995)

    Article  CAS  Google Scholar 

  30. Gross, H.J., Brossmer, R.: Enzymatic transfer of sialic acids modified at C-5 employing four different sialyltransferases. Glycoconj. J. 12, 739–746 (1995)

    Article  CAS  PubMed  Google Scholar 

  31. Gross, H.J., Rose, U., Krause, J.M., Paulson, J.C., Schmid, K., Feeney, R.E., Brossmer, R.: Transfer of synthetic sialic acid analogues to N- and O-linked glycoprotein glycans using four different mammalian sialyltransferases. Biochemistry 28, 7386–7392 (1989)

    Article  CAS  PubMed  Google Scholar 

  32. Galuska, S.P., Geyer, H., Weinhold, B., Kontou, M., Röhrich, R.C., Bernard, U., Gerardy-Schahn, R., Reutter, W., Münster-Kühnel, A., Geyer, R.: Quantification of nucleotide-activated sialic acids by a combination of reduction and fluorescent labeling. Anal. Chem. 82, 4591–4598 (2010)

    Article  CAS  PubMed  Google Scholar 

  33. Mathew, M.P., Tan, E., Shah, S., Bhattacharya, R., Adam Meledeo, M., Huang, J., Espinoza, F.A., Yarema, K.J.: Extracellular and intracellular esterase processing of SCFA–hexosamine analogs: implications for metabolic glycoengineering and drug delivery. Bioorg. Med. Chem. Lett. 22, 6929–6933 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Tallman, K.R., Beatty, K.E.: Far-red fluorogenic probes for esterase and lipase detection. Chembiochem 16, 70–75 (2015)

    Article  CAS  PubMed  Google Scholar 

  35. Staudinger, J.L., Xu, C., Cui, Y.J., Klaassen, C.D.: Nuclear receptor-mediated regulation of carboxylesterase expression and activity. Expert Opin Drug Metab Toxicol. 6, 261–271 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Hawley, S.A., Fullerton, M.D., Ross, F.A., Schertzer, J.D., Chevtzoff, C., Walker, K.J., Peggie, M.W., Zibrova, D., Green, K.A., Mustard, K.J., Kemp, B.E., Sakamoto, K., Steinberg, G.R., Hardie, D.G.: The ancient drug salicylate directly activates AMP-activated protein kinase. Science 336, 918–922 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Oetke, C., Hinderlich, S., Reutter, W., Pawlita, M.: Epigenetically mediated loss of UDP-GlcNAc 2-epimerase/ManNAc kinase expression in hyposialylated cell lines. Biochem. Biophys. Res. Comm. 308, 892–898 (2003)

    Article  CAS  PubMed  Google Scholar 

  38. Jacobs, C.L., Goon, S., Yarema, K.J., Hinderlich, S., Hang, H.C., Chai, D.H., Bertozzi, C.R.: Substrate specificity of the sialic acid biosynthetic pathway. Biochemistry 40, 12864–12874 (2001)

    Article  CAS  PubMed  Google Scholar 

  39. Tian, L., Yang, Y., Wysocki, L.M., Arnold, A.C., Hu, A., Ravichandran, B., Sternson, S.M., Looger, L.L., Lavis, L.D.: Selective esterase-ester pair for targeting small molecules with cellular specificity. Proc. Natl. Acad. Sci. U. S. A. 109, 4756–4761 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Kornfeld, S., Kornfeld, R., Neufeld, E.F., O-Brien, P.J.: The feedback control of sugar nucleotide biosynthesis in liver. Proc. Natl. Acad. Sci. U. S. A. 52, 371–379 (1964)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Seppala, R., Lehto, V.P., Gahl, W.A.: Mutations in the human UDP-N-acetylglucosamine 2-epimerase gene define the disease sialuria and the allosteric site of the enzyme. Am. J. Hum. Genet. 64, 1563–1569 (1999)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Zaro, B.W., Chuh, K.N., Pratt, M.R.: Chemical reporter for visualizing metabolic cross-talk between carbohydrate metabolism and protein modification. ACS Chem. Biol. 9, 1991–1996 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Rodriguez, A.C., Kohler, J.J.: Recognition of diazirine-modified O-GlcNAc by human O-GlcNAcase. MedChemComm. 5, 1227–1234 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Chang, P.V., Dube, D.H., Sletten, E.M., Bertozzi, C.R.: A strategy for the selective imaging of glycans using caged metabolic precursors. J. Am. Chem. Soc. 132, 9516–9518 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Sunil Laxman and Benjamin Tu for guidance on LC-MS/MS analysis. We thank Maciej Kukula at the Shimadzu Center for Advanced Analytical Chemistry (SCAAC) at the University of Texas at Arlington for aiding us with mass spectrometry identification of NeuAc-9-P. We thank Yibing Wang, Randy Parker, Amberlyn Wands, Akiko Fujita, and Fan Yang for experimental assistance and thank Akiko Fujita and Amberlyn Wands for comments on the manuscript. We acknowledge support from the National Institutes of Health (NIH R01GM090271), the Cancer Prevention and Research Institute of Texas (CPRIT RP110080), and the Welch Foundation (I-1686). NDP was supported by a predoctoral fellowship from the NIH (F30AG040909) and ACR received support from a training grant from the NIH (T32GM007062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer J. Kohler.

Additional information

Charles S. Fermaintt and Andrea C. Rodriguez contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 688 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, N.D., Fermaintt, C.S., Rodriguez, A.C. et al. Cellular metabolism of unnatural sialic acid precursors. Glycoconj J 32, 515–529 (2015). https://doi.org/10.1007/s10719-015-9593-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-015-9593-7

Keywords

Navigation