Skip to main content
Log in

Self-recognition of high-mannose type glycans mediating adhesion of embryonal fibroblasts

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

High-mannose type N-linked glycan with 6 mannosyl residues, termed "M6Gn2", displayed clear binding to the same M6Gn2, conjugated with ceramide mimetic (cer-m) and incorporated in liposome, or coated on polystyrene plates. However, the conjugate of M6Gn2-cer-m did not interact with complex-type N-linked glycan with various structures having multiple GlcNAc termini, conjugated with cer-m. The following observations indicate that hamster embryonic fibroblast NIL-2 K cells display homotypic autoadhesion, mediated through the self-recognition capability of high-mannose type glycans expressed on these cells: (i) NIL-2 K cells display clear binding to lectins capable of binding to high-mannose type glycans (e.g., ConA), but not to other lectins capable of binding to other carbohydrates (e.g. GS-II). (ii) NIL-2 K cells adhere strongly to plates coated with M6Gn2-cer-m, but not to plates coated with complex-type N-linked glycans having multiple GlcNAc termini, conjugated with cer-m; (iii) degree of NIL-2 K cell adhesion to plates coated with M6Gn2-cer-m showed a clear dose-dependence on the amount of M6Gn2-cer-m; and (iv) the degree of NIL-2 K adhesion to plates coated with M6Gn2-cer-m was inhibited in a dose-dependent manner by α1,4-L-mannonolactone, the specific inhibitor in high-mannose type glycans addition. These data indicate that adhesion of NIL-2 K is mediated by self-aggregation of high mannose type glycan. Further studies are to be addressed on auto-adhesion of other types of cells based on self interaction of high mannose type glycans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CB:

cellobiose (Glcβ1-4Glc)

cer-m:

ceramide mimetic (tetradecylhexadecane)

CCI:

carbohydrate-to-carbohydrate interaction

C/M/W:

a mixture of chloroform methanol and water in a defined volume ratio as indicated case by case

ConA:

Concanavalin A

Glc:

glucose

GlcNAc:

N-acetylglucosamine

GS-II:

Griffonia simplicifolia-II lectin

HPLC:

high performance liquid chromatography

Lex :

Galβ1-4[Fucα1-3]GlcNAcβ1-3Gal

M/W:

methanol and water mixture

NH2cer-m:

aminoceramide mimetic

ODS column:

Shim-pack HRC-octadecyl silica column

Os:

oligosaccharide

PC:

1,2-dimyristoyl-sn-3-phosphocholine

TLC:

thin-layer chromatography

References

  1. Fenderson, B.A., Zehavi, U., Hakomori, S.: A multivalent lacto-N-fucopentaose III-lysyllysine conjugate decompacts preimplantation mouse embryos, while the free oligosaccharide is ineffective. J Exp Med 160(5), 1591–1596 (1984)

    Article  PubMed  CAS  Google Scholar 

  2. Eggens, I., Fenderson, B.A., Toyokuni, T., Dean, B., Stroud, M.R., Hakomori, S.: Specific interaction between Lex and Lex determinants: a possible basis for cell recognition in preimplantation embryos and in embryonal carcinoma cells. J Biol Chem 264(16), 9476–9484 (1989)

    PubMed  CAS  Google Scholar 

  3. Kojima, N., Fenderson, B.A., Stroud, M.R., Goldberg, R.I., Habermann, R., Toyokuni, T., Hakomori, S.: Further studies on cell adhesion based on Lex-Lex interaction, with new approaches: Embryoglycan aggregation of F9 teratocarcinoma cells, and adhesion of various tumour cells based on Lex expression. Glycoconj J 11(3), 238–248 (1994)

    Article  PubMed  CAS  Google Scholar 

  4. Handa, K., Takatani-Nakase, T., Larue, L., Stemmler, M.P., Kemler, R., Hakomori, S.: Lex glycan mediates homotypic adhesion of embryonal cells independently from E-cadherin: a preliminary note. Biochem Biophys Res Commun 358(1), 247–252 (2007)

    Article  PubMed  CAS  Google Scholar 

  5. Humphreys, T.: Chemical dissolution and in vitro reconstruction of sponge cell adhesions: I. Isolation and functional demonstration of the components involved. Dev Biol 8, 27–47 (1963)

    Article  PubMed  CAS  Google Scholar 

  6. Misevic, G.N., Burger, M.M.: Carbohydrate-carbohydrate interactions of a novel acidic glycan can mediate sponge cell adhesion. J Biol Chem 268(7), 4922–4929 (1993)

    PubMed  CAS  Google Scholar 

  7. Haseley, S.R., Vermeer, H.J., Kamerling, J.P., Vliegenthart, J.F.G.: Carbohydrate self-recognition mediates marine sponge cellular adhesion. Proc Natl Acad Sci USA 98(16), 9419–9424 (2001)

    Article  PubMed  CAS  Google Scholar 

  8. Bucior, I., Scheuring, S., Engel, A., Burger, M.M.: Carbohydrate-carbohydrate interaction provides adhesion force and specificity for cellular recognition. J Cell Biol 165(4), 529–537 (2004)

    Article  PubMed  CAS  Google Scholar 

  9. Carvalho de Souza, A., Halkes, K.M., Meeldijk, J.D., Verkleij, A.J., Vliegenthart, J.F., Kamerling, J.P.: Gold glyconanoparticles as probes to explore the carbohydrate-mediated self-recognition of marine sponge cells. Chembiochem 6(5), 828–831 (2005)

    Article  PubMed  CAS  Google Scholar 

  10. Siuzdak, G., Ichikawa, Y., Caulfield, T.J., Munoz, B., Wong, C.-H., Nicolaou, K.C.: Evidence of Ca2+-dependent carbohydrate association through ion spray mass spectrometry. J Am Chem Soc 115, 2877–2881 (1993)

    Article  CAS  Google Scholar 

  11. Koshy, K.M., Boggs, J.M.: Investigation of the calcium-mediated association between the carbohydrate head groups of galactosylceramide and galactosylceramide I3 sulfate by electrospray ionization mass spectrometry. J Biol Chem 271(7), 3496–3499 (1996)

    Article  PubMed  CAS  Google Scholar 

  12. Geyer, A., Gege, C., Schmidt, R.R.: Carbohydrate-carbohydrate recognition between Lewisx glycoconjugates. Angew Chem Intl Ed 38(10), 1466–1468 (1999)

    Article  CAS  Google Scholar 

  13. Geyer, A., Gege, C., Schmidt, R.R.: Calcium-dependent carbohydrate-carbohydrate recognition between Lewis(X) blood group antigens. Angew Chem Intl Ed 39(18), 3245–3249 (2000)

    Article  Google Scholar 

  14. Dammer, U., Popescu, O., Wagner, P., Anselmetti, D., Guntherodt, H.-J., Misevic, G.N.: Binding strength between cell adhesion proteoglycans measured by atomic force microscopy. Science 267, 1173–1175 (1995)

    Article  PubMed  CAS  Google Scholar 

  15. Tromas, C., Rojo, J., de la Fuente, J.M., Barrientos, A.G., Garcia, R., Penades, S.: Adhesion forces between Lewisx determinant antigens as measured by atomic force microscopy. Angew Chem Intl Ed 40(16), 3052–3055 (2001)

    Article  CAS  Google Scholar 

  16. Matsuura, K., Kitakouji, H., Sawada, N., Ishida, H., Kiso, M., Kitajima, K., Kobayashi, K.: A quantitative estimation of carbohydrate-carbohydrate interaction using clustered oligosaccharides of glycolipid monolayers and of artificial glycoconjugate polymers by surface plasmon resonance. J Am Chem Soc 122(30), 7406–7407 (2000)

    Article  CAS  Google Scholar 

  17. Hernaiz, M.J., de la Fuente, J.M., Barrientos, A.G., Penades, S.: A model system mimicking glycosphingolipid clusters to quantify carbohydrate self-interactions by surface plasmon resonance. Angew Chem Intl Ed 41(9), 1554–1557 (2002)

    Article  CAS  Google Scholar 

  18. Rojo, J., Diaz, V., de la Fuente, J.M., Segura, I., Barrientos, A.G., Riese, H.H., Bernad, A., Penades, S.: Gold glyconanoparticles as new tools in antiadhesive therapy. Chembiochem 5(3), 291–297 (2004)

    Article  PubMed  CAS  Google Scholar 

  19. de la Fuente, J.M., Eaton, P., Barrientos, A.G., Menendez, M., Penades, S.: Thermodynamic evidence for Ca2 + -mediated self-aggregation of Lewis X gold glyconanoparticles. A model for cell adhesion via carbohydrate-carbohydrate interaction. J Am Chem Soc 127(17), 6192–6197 (2005)

    Article  PubMed  Google Scholar 

  20. Yoon, S., Nakayama, K., Takahashi, N., Yagi, H., Utkina, N., Wang, H.Y., Kato, K., Sadilek, M., Hakomori, S.: Interaction of N-linked glycans, having multivalent GlcNAc termini, with GM3 ganglioside. Glycoconj J 23(9), 639–649 (2006)

    Article  PubMed  CAS  Google Scholar 

  21. Yoon, S., Nakayama, K., Hikita, T., Handa, K., Hakomori, S.: Epidermal growth factor receptor tyrosine kinase is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor. Proc Natl Acad Sci USA 103(50), 18987–18991 (2006)

    Article  PubMed  CAS  Google Scholar 

  22. Diamond, L.: Two spontaneously transformed cell lines derived from the same hamster embryo culture. Int J Cancer 2(2), 143–152 (1967)

    Article  PubMed  CAS  Google Scholar 

  23. Kijimoto, S., Hakomori, S.: Contact-dependent enhancement of net synthesis of Forssman glycolipid antigen and hematoside in NIL cells at the early stage of cell-to-cell contact. FEBS Lett 25(1), 38–42 (1972)

    Article  PubMed  CAS  Google Scholar 

  24. Hakomori, S., Kijimoto, S.: Forssman reactivity and cell contacts in cultured hamster cells. Nat New Biol 239(90), 87–88 (1972)

    PubMed  CAS  Google Scholar 

  25. Rauvala, H., Carter, W.G., Hakomori, S.: Studies on cell adhesion and recognition: I. Extent and specificity of cell adhesion triggered by carbohydrate-reactive proteins (glycosidases and lectins) and by fibronectin. J Cell Biol 88(1), 127–137 (1981)

    Article  PubMed  CAS  Google Scholar 

  26. Finne, J., Krusius, T.: Preparation and fractionation of glycopeptides. Meth Enzymol 83, 269–277 (1982)

    Article  PubMed  CAS  Google Scholar 

  27. Tomiya, N., Awaya, J., Kurono, M., Endo, S., Arata, Y., Takahashi, N.: Analyses of N-linked oligosaccharides using a two-dimensional mapping technique. Anal Biochem 171, 73–90 (1988)

    Article  PubMed  CAS  Google Scholar 

  28. Hase, S., Ibuki, T., Ikenaka, T.: Reexamination of the pyridylamination used for fluorescence labeling of oligosaccharides and its application to glycoproteins. J Biochem (Tokyo) 95(1), 197–203 (1984)

    CAS  Google Scholar 

  29. Takahashi, N., Nakagawa, H., Fujikawa, K., Kawamura, Y., Tomiya, N.: Three-dimensional elution mapping of pyridylaminated N-linked neutral and sialyl oligosaccharides. Anal Biochem 226, 139–146 (1995)

    Article  PubMed  CAS  Google Scholar 

  30. Takahashi, N., Matsuda, T., Shikami, K., Shimada, I., Arata, Y., Nakamura, R.: A structural study of the asparagine-linked oligosaccharide moiety of duck ovomucoid. Glycoconj J 10(6), 425–434 (1993)

    Article  PubMed  CAS  Google Scholar 

  31. Takahashi, N., Kato, K.: GALAXY (Glycoanalysis by the Three Axes of MS and Chromatography): a web application that assists structural analyses of N-glycans. Trends in Glycosci Glycotechnol (TIGG) 15, 235–251 (2003)

    Article  CAS  Google Scholar 

  32. Yoon, S., Ikeda, S., Sadilek, M., Hakomori, S., Ishida, H., Kiso, M.: Self-recognition of N-linked glycans with multivalent GlcNAc, determined as ceramide mimetic conjugate. Glycobiology 17(9), 1007–1014 (2007)

    Article  PubMed  CAS  Google Scholar 

  33. Skipski, V.P.: Thin layer chromatography of neutral glycosphingolipids. Meth Enzymol 35, 396–425 (1975)

    Article  PubMed  CAS  Google Scholar 

  34. Carter, W.G., Rauvala, H., Hakomori, S.: Studies on cell adhesion and recognition: II. The kinetics of cell adhesion and cell spreading on surfaces coated with carbohydrate-reactive proteins (glycosidases and lectins) and fibronectin. J Cell Biol 88, 138–148 (1981)

    Article  PubMed  CAS  Google Scholar 

  35. Rauvala, H., Hakomori, S.: Studies on cell adhesion and recognition. III. The occurrence of alpha-mannosidase at the fibroblast cell surface, and its possible role in cell recognition. J Cell Biol 88(1), 149–159 (1981)

    Article  PubMed  CAS  Google Scholar 

  36. Kalckar, H.M.: Galactose metabolism and cell "sociology". Science 150(3694), 305–313 (1965)

    Article  PubMed  CAS  Google Scholar 

  37. Artzt, K., Hamburger, L., Jakob, H., Jacob, F.: Embryonic surface antigens: a "quasi-endodermal" teratoma antigen. Dev Biol 51(1), 152–157 (1976)

    Article  PubMed  CAS  Google Scholar 

  38. Jacob, F.: Mouse teratocarcinoma and embryonic antigens. Immunol Rev 33, 3–32 (1977)

    Article  PubMed  CAS  Google Scholar 

  39. Kemler, R., Babinet, C., Eisen, H., Jacob, F.: Surface antigen in early differentiation. Proc Natl Acad Sci U S A 74(10), 4449–4452 (1977)

    Article  PubMed  CAS  Google Scholar 

  40. Yoshida, C., Takeichi, M.: Teratocarcinoma cell adhesion: identification of a cell-surface protein involved in calcium-dependent cell aggregation. Cell 28(2), 217–224 (1982)

    Article  PubMed  CAS  Google Scholar 

  41. Takeichi, M.: Cadherins: A molecular family essential for selective cell-cell adhesion and animal morphogenesis. Trends Gen 3, 213–217 (1987)

    Article  CAS  Google Scholar 

  42. Piez, K.A.: Molecular and aggregate structures of the collagens. In: Piez, K.A., Reddi, A.H. (eds.) Extracellular matrix biochemistry, pp. 1–40. Elsevier Science, New York (1984)

    Google Scholar 

  43. Miller EJ (1984). Chemistry of the collagens and their distribution. In the same monograph as above; and many other ECM (pp 41–82)

  44. Gahmberg, C.G., Hakomori, S.: Altered growth behavior of malignant cells associated with changes in externally labeled glycoprotein and glycolipids. Proc Natl Acad Sci USA 70(12), 3329–3333 (1973)

    Article  PubMed  CAS  Google Scholar 

  45. Carter, W.G., Hakomori, S.: Isolation and partial characterization of "galactoprotein a" (LETS) and "galactoprotein b" from hamster embryo fibroblasts. Biochem Biophys Res Commun 76, 299–308 (1977)

    Article  CAS  Google Scholar 

  46. Hynes, R.O.: Fibronectins, p. 544. Springer, New York (1990)

    Book  Google Scholar 

  47. Mosher, D.F.: Fibronectin. Academic, San Diego (1989)

    Google Scholar 

  48. Engvall, E., Ruoslahti, E.: Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int J Cancer 20, 1–5 (1977)

    Article  PubMed  CAS  Google Scholar 

  49. Timpl, R., Rohde, H., Robey, P.G., Rennard, S.I., Foidart, J.M., Martin, G.R.: Laminin–a glycoprotein from basement membranes. J Biol Chem 254(19), 9933–9937 (1979)

    PubMed  CAS  Google Scholar 

  50. Colognato, H., Yurchenco, P.D.: Form and function: the laminin family of heterotrimers. Dev Dyn 218(2), 213–234 (2000)

    Article  PubMed  CAS  Google Scholar 

  51. Hynes, R.O.: Integrins: a family of cell surface receptors. Cell 48, 549–554 (1987)

    Article  PubMed  CAS  Google Scholar 

  52. Luo, B.H., Carman, C.V., Springer, T.A.: Structural basis of integrin regulation and signaling. Annu Rev Immunol 25, 619–647 (2007)

    Article  PubMed  CAS  Google Scholar 

  53. Simons, K., Ikonen, E.: Functional rafts in cell membranes. Nature 387(6633), 569–572 (1997)

    Article  PubMed  CAS  Google Scholar 

  54. Coskun, U., Grzybek, M., Drechsel, D., Simons, K.: Regulation of human EGF receptor by lipids. Proc Natl Acad Sci U S A 108(22), 9044–9048 (2011)

    Article  PubMed  CAS  Google Scholar 

  55. Yamamura, S., Handa, K., Hakomori, S.: A close association of GM3 with c-Src and Rho in GM3-enriched microdomains at the B16 melanoma cell surface membrane: a preliminary note. Biochem Biophys Res Commun 236(1), 218–222 (1997)

    Article  PubMed  CAS  Google Scholar 

  56. Iwabuchi, K., Handa, K., Hakomori, S.: Separation of "glycosphingolipid signaling domain" from caveolin-containing membrane fraction in mouse melanoma B16 cells and its role in cell adhesion coupled with signaling. J Biol Chem 273(50), 33766–33773 (1998)

    Article  PubMed  CAS  Google Scholar 

  57. Hakomori, S., Handa, K.: Glycosphingolipid-dependent cross-talk between glycosynapses interfacing tumor cells with their host cells: essential basis to define tumor malignancy. FEBS Lett 531(1), 88–92 (2002)

    Article  PubMed  CAS  Google Scholar 

  58. Barresi, R., Campbell, K.P.: Dystroglycan: from biosynthesis to pathogenesis of human disease. J Cell Sci 119(Pt 2), 199–207 (2006)

    Article  PubMed  CAS  Google Scholar 

  59. Bao, X., Kobayashi, M., Hatakeyama, S., Angata, K., Gullberg, D., Nakayama, J., Fukuda, M.N., Fukuda, M.: Tumor suppressor function of laminin-binding alpha-dystroglycan requires a distinct beta3-N-acetylglucosaminyltransferase. Proc Natl Acad Sci U S A 106(29), 12109–12114 (2009)

    Article  PubMed  CAS  Google Scholar 

  60. Yoneyama, T., Angata, K., Bao, X., Courtneidge, S., Chanda, S.K., Fukuda, M.: Fer kinase regulates cell migration through alpha-dystroglycan glycosylation. Mol Biol Cell 23(5), 771–780 (2012)

    Article  PubMed  CAS  Google Scholar 

  61. Hakomori, S., Murakami, W.T.: Glycolipids of hamster fibroblasts and derived malignant-transformed cell lines. Proc Natl Acad Sci USA 59(1), 254–261 (1968)

    Article  PubMed  CAS  Google Scholar 

  62. Hakomori, S.: Cell density-dependent changes in glycolipid concentrations in fibroblasts, and loss of this response in virus-transformed cells. Proc Natl Acad Sci USA 67, 1741–1747 (1970)

    Article  PubMed  CAS  Google Scholar 

  63. Brady, R.O., Borek, C., Bradley, R.M.: Composition and synthesis of gangliosides in rat hepatocyte and hepatoma cell lines. J Biol Chem 244(23), 6552–6554 (1969)

    PubMed  CAS  Google Scholar 

  64. Mora, P.T., Fishman, P.H., Bassin, R.H., Brady, R.O., McFarland, V.W.: Transformation of Swiss 3 T3 cells by murine sarcoma virus is followed by decrease in a glycolipid glycosyltransferase. Nature New Biol 245(147), 226–229 (1973)

    PubMed  CAS  Google Scholar 

  65. Hakomori, S., Wyke, J.A., Vogt, P.K.: Glycolipids of chick embryo fibroblasts infected with temperature-sensitive mutants of avian sarcoma viruses. Virology 76(2), 485–493 (1977)

    Article  PubMed  CAS  Google Scholar 

  66. Miura, Y., Kainuma, M., Jiang, H., Velasco, H., Vogt, P.K., Hakomori, S.: Reversion of the Jun-induced oncogenic phenotype by enhanced synthesis of sialosyllactosylceramide (GM3 ganglioside). Proc Natl Acad Sci USA 101(46), 16204–16209 (2004)

    Article  PubMed  CAS  Google Scholar 

  67. Leffler, H.: Special issue on galectins, dedicated to Professor Samuel H. Barondes. Glycoconj J 19((7/8/9)), 433–629 (2004)

    PubMed  Google Scholar 

  68. Varki, A.: Selectin ligands. Proc Natl Acad Sci USA 91(16), 7390–7397 (1994)

    Article  PubMed  CAS  Google Scholar 

  69. Phillips, M.L., Nudelman, E.D., Gaeta, F.C.A., Perez, M., Singhal, A.K., Hakomori, S., Paulson, J.C.: ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex. Science 250, 1130–1132 (1990)

    Article  PubMed  CAS  Google Scholar 

  70. Polley, M.J., Phillips, M.L., Wayner, E.A., Nudelman, E.D., Singhal, A.K., Hakomori, S., Paulson, J.C.: CD62 and endothelial cell-leukocyte adhesion molecule 1 (ELAM-1) recognize the same carbohydrate ligand, sialyl-Lewis x. Proc Natl Acad Sci USA 88, 6224–6228 (1991)

    Article  PubMed  CAS  Google Scholar 

  71. Handa, K., Nudelman, E.D., Stroud, M.R., Shiozawa, T., Hakomori, S.: Selectin GMP-140 (CD62; PADGEM) binds to sialosyl-Lea and sialosyl-Lex, and sulfated glycans modulate this binding. Biochem Biophys Res Commun 181, 1223–1230 (1991)

    Article  PubMed  CAS  Google Scholar 

  72. Crocker, P.R., Clark, E.A., Filbin, M., Gordon, S., Jones, Y., Varki, A.: Siglecs: a family of sialic acid-binding lectins. Glycobiology 8(2), v–vi (1998)

    Article  PubMed  CAS  Google Scholar 

  73. Fukuda, M.N.: Peptide-displaying phage technology in glycobiology. Glycobiology 22(3), 318–325 (2012)

    Article  PubMed  CAS  Google Scholar 

  74. Fukuda, M.N., Yoneyama, T.: Identification of carbohydrate-binding proteins by carbohydrate mimicry peptides. Methods Enzymol 478, 563–572 (2010)

    Article  PubMed  CAS  Google Scholar 

  75. Ledeen, R.W., Hakomori, S., Yates, A.J., Schneider, J.S., Yu, R.K.: Sphingolipids as signaling modulators in the nervous system. Annals of the New York Academy of Sciences, vol. 845, pp. 161–391. New York Academy of Sciences, New York (1998)

    Google Scholar 

  76. Ariga, T., McDonald, M.P., Yu, R.K.: Role of ganglioside metabolism in the pathogenesis of Alzheimer's disease–a review. J Lipid Res 49(6), 1157–1175 (2008)

    Article  PubMed  CAS  Google Scholar 

  77. Yagi-Utsumi, M., Kameda, T., Yamaguchi, Y., Kato, K.: NMR characterization of the interactions between lyso-GM1 aqueous micelles and amyloid beta. FEBS Lett 584(4), 831–836 (2012)

    Article  Google Scholar 

  78. Solter, D., Knowles, B.B.: Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci USA 75(11), 5565–5569 (1978)

    Article  PubMed  CAS  Google Scholar 

  79. Stemmler, M.P., Hecht, A., Kemler, R.: E-cadherin intron 2 contains cis-regulatory elements essential for gene expression. Development 132(5), 965–976 (2005)

    Article  PubMed  CAS  Google Scholar 

  80. Kojima, N., Shiota, M., Sadahira, Y., Handa, K., Hakomori, S.: Cell adhesion in a dynamic flow system as compared to static system: Glycosphingolipid-glycosphingolipid interaction in the dynamic system predominates over lectin- or integrin-based mechanisms in adhesion of B16 melanoma cells to non-activated endothelial cells. J Biol Chem 267, 17264–17270 (1992)

    PubMed  CAS  Google Scholar 

  81. de la Fuente, J.M., Barrientos, A.G., Rojas, T.C., Rojo, J., Canada, J., Fernandez, A., Penades, S.: Gold glyconanoparticles as water-soluble polyvalent models to study carbohydrate interactions. Angew Chem Intl Ed 40(12), 2259–2261 (2001)

    Google Scholar 

  82. de la Fuente, J.M., Penades, S.: Understanding carbohydrate-carbohydrate interactions by means of glyconanotechnology. Glycoconj J 21(3–4), 149–163 (2004)

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH/ NIGMS grant GM070593, and NIH/ NCI R01 CA42505 (to S.H.), and by Grants in Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to H.Y. and K.K.). The authors like to thank Steve Anderson and Wai Cheu Lai for help in preparation of the manuscript and figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen-itiroh Hakomori.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(PDF 186 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, SJ., Utkina, N., Sadilek, M. et al. Self-recognition of high-mannose type glycans mediating adhesion of embryonal fibroblasts. Glycoconj J 30, 485–496 (2013). https://doi.org/10.1007/s10719-012-9449-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-012-9449-3

Keywords

Navigation