Skip to main content
Log in

Interaction of N-linked glycans, having multivalent GlcNAc termini, with GM3 ganglioside

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

A Publisher's Erratum to this article was published on 19 January 2007

Abstract

GM3 ganglioside interacts specifically with complex-type N-linked glycans having multivalent GlcNAc termini, as shown for (1) and (2) below. (1) Oligosaccharides (OS) isolated from ConA-non-binding N-linked glycans of ovalbumin, whose structures were identified as penta-antennary complex-type with bisecting GlcNAc, having five or six GlcNAc termini (OS B1, B2), or bi-antennary complex-type having two GlcNAc termini (OS I). OS I is a structure not previously described. (2) Multi-antennary complex-type N-linked OS isolated from fetuin, treated by sialidase followed by β-galactosidase, having three or four GlcNAc termini exposed. These OS, conjugated to phosphatidylethanolamine (PE), showed clear interaction with 3H-labeled liposomes containing GM3, when various doses of OS-PE conjugate were adhered by drying to multi-well polystyrene plates. Interaction was clearly observed only with liposomes containing GM3, but not LacCer, Gb4, or GalNAcα1-3Gb4 (Forssman antigen). GM3 interaction with PE conjugate of OS B1 or B2 was stronger than that with PE conjugate of OS I. GM3 interacted clearly with PE conjugate of N-linked OS from desialylated and degalactosylated fetuin, but not native fetuin. No binding was observed to cellobiose-PE conjugate, or to OS-PE conjugate lacking GlcNAc terminus. Thus, GM3, but not other GSL liposomes, interacts with various N-linked OS having multiple GlcNAc termini, in general. These findings suggest that the concept of carbohydrate-to-carbohydrate interaction can be extended to interaction of specific types of N-linked glycans with specific GSLs. Natural occurrence of such interaction to define cell biological phenomena is under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CB:

cellobiose

CCI:

carbohydrate-to-carbohydrate interaction

C/M/W:

chloroform/methanol/water

ConA:

Concanavalin A

GlcNAc:

N-acetylglucosamine

Gb4:

globoside (GalNAcβ3Galα4Galβ4Glcβ1Cer)

Gg3:

GalNAcβ4Galβ4Glcβ1Cer

GM3:

NeuAcα3Galβ4Glcβ1Cer

GSL:

glycosphingolipid

OS:

oligosaccharides

PC:

1,2-dimyristoyl-sn-glycero-3-phosphocholine

PE:

phosphatidylethanolamine (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine)

References

  1. Eggens, I., Fenderson, B.A., Toyokuni, T., Dean, B., Stroud, M.R., Hakomori, S.: Specific interaction between Lex and Lex determinants: A possible basis for cell recognition in preimplantation embryos and in embryonal carcinoma cells. J. Biol. Chem. 264, 9476–9484 (1989)

    PubMed  CAS  Google Scholar 

  2. Kojima, N., Hakomori, S.: Specific interaction between gangliotriaosylceramide (Gg3) and sialosyllactosylceramide (GM3) as a basis for specific cellular recognition between lymphoma and melanoma cells. J. Biol. Chem. 264, 20159–20162 (1989)

    PubMed  CAS  Google Scholar 

  3. Misevic, G.N., Burger, M.M.: Carbohydrate-carbohydrate interactions of a novel acidic glycan can mediate sponge cell adhesion. J. Biol. Chem. 268, 4922–4929 (1993)

    PubMed  CAS  Google Scholar 

  4. Spillmann, D., Thomas-Oates, J.E., van Kuik, J.A., Vliegenthart, J.F.G., Misevic, G., Burger, M.M., Finne, J.: Characterization of a novel sulfated carbohydrate unit implicated in the carbohydrate-carbohydrate-mediated cell aggregation of the marine sponge Microciona prolifera. J. Biol. Chem. 270, 5089–5097 (1995)

    Article  PubMed  CAS  Google Scholar 

  5. Bucior, I., Scheuring, S., Engel, A., Burger, M.M.: Carbohydrate-carbohydrate interaction provides adhesion force and specificity for cellular recognition. J. Cell Biol. 165, 529–537 (2004)

    Article  PubMed  CAS  Google Scholar 

  6. Haseley, S.R., Vermeer, H.J., Kamerling, J.P., Vliegenthart, J.F.G.: Carbohydrate self-recognition mediates marine sponge cellular adhesion. Proc. Natl. Acad. Sci. USA 98, 9419–9424 (2001)

    Article  PubMed  CAS  Google Scholar 

  7. Kojima, N., Hakomori, S.: Cell adhesion, spreading, and motility of GM3-expressing cells based on glycolipid–glycolipid interaction. J. Biol. Chem. 266, 17552–17558 (1991)

    PubMed  CAS  Google Scholar 

  8. Kojima, N., Shiota, M., Sadahira, Y., Handa, K., Hakomori, S.: Cell adhesion in a dynamic flow system as compared to static system: Glycosphingolipid–glycosphingolipid interaction in the dynamic system predominates over lectin- or integrin-based mechanisms in adhesion of B16 melanoma cells to non-activated endothelial cells. J. Biol. Chem. 267, 17264–17270 (1992)

    PubMed  CAS  Google Scholar 

  9. Rojo, J., Diaz, V., de la Fuente, J.M., Segura, I., Barrientos, A.G., Riese, H.H., Bernad, A., Penades, S.: Gold glyconanoparticles as new tools in antiadhesive therapy. Chembiochem. 5, 291–297 (2004)

    Article  PubMed  CAS  Google Scholar 

  10. Zhu, Z., Kojima, N., Stroud, M.R., Hakomori, S., Fenderson, B.A.: Monoclonal antibody directed to Le(y) oligosaccharide inhibits implantation in the mouse. Biol. Repro. 52, 903–912 (1995)

    Article  CAS  Google Scholar 

  11. Yamashita, K., Kamerling, J.P., Kobata, A.: Structural study of the carbohydrate moiety of hen ovomucoid: occurrence of a series of pentaantennary complex-type asparagine-linked sugar chains. J. Biol. Chem. 257, 12809–12814 (1982)

    PubMed  CAS  Google Scholar 

  12. Symington, F.W., Fenderson, B.A., Hakomori, S.: Fine specificity of a monoclonal anti-testicular cell antibody for glycolipids with terminal N-acetyl-d-glucosamine structure. Molec. Immun. 21 (1984)

  13. Dohi, T., Nores, G., Hakomori, S.: An IgG3 monoclonal antibody established after immunization with GM3 lactone: Immunochemical specificity and inhibition of melanoma cell growth in vitro and in vivo. Cancer Res. 48, 5680–5685 (1988)

    PubMed  CAS  Google Scholar 

  14. Young, W.W.J., MacDonald, E.M.S., Nowinski, R.C., Hakomori, S.: Production of monoclonal antibodies specific for distinct portions of the glycolipid asialo GM2 (gangliotriosylceramide). J. Exp. Med. 150, 1008–1019 (1979)

    Article  PubMed  CAS  Google Scholar 

  15. Mizuochi, T.: Microscale sequencing of N-linked oligosaccharides of glycoproteins using hydrazinolysis, Bio-GelP-4, and sequential exoglycosidase digestion. In: Hounsell, E.F. (ed.) In Methods in Molecular Biology: Glycoprotein Analysis in Biomedicine, Vol. 14, pp. 55–68. Humana, Totawa, NJ (1993)

    Chapter  Google Scholar 

  16. Shimizu, Y., Nakata, M., Kuroda, Y., Tsutsumi, F., Kojima, N., Mizuochi, T.: Rapid and simple preparation of N-linked oligosaccharides by cellulose-column chromatography. Carbohydr. Res. 332, 381–388 (2001)

    Article  PubMed  CAS  Google Scholar 

  17. Merkle, R.K., Cummings, R.D.: Lectin affinity chromatography of glycopeptides. Meth. Enzymol. 138, 232–259 (1987)

    PubMed  CAS  Google Scholar 

  18. Ohyama, Y., Kasai, K., Nomoto, H., Inoue, Y.: Frontal affinity chromatography of ovalbumin glycoasparagines on a concanavalin A-sepharose column. A quantitative study of the binding specificity of the lectin. J. Biol. Chem. 260, 6882–6887 (1985)

    PubMed  CAS  Google Scholar 

  19. Hase, S., Ibuki, T., Ikenaka, T.: Reexamination of the pyridylamination used for fluorescence labeling of oligosaccharides and its application to glycoproteins. J. Biochem. (Tokyo) 95, 197–203 (1984)

    CAS  Google Scholar 

  20. Tomiya, N., Awaya, J., Kurono, M., Endo, S., Arata, Y., Takahashi, N.: Analyses of N-linked oligosaccharides using a two-dimensional mapping technique. Anal. Biochem. 171, 73–90 (1988)

    Article  PubMed  CAS  Google Scholar 

  21. Takahashi, N., Nakagawa, H., Fujikawa, K., Kawamura, Y., Tomiya, N.: Three-dimensional elution mapping of pyridylaminated N-linked neutral and sialyl oligosaccharides. Anal. Biochem. 226, 139–146 (1995)

    Article  PubMed  CAS  Google Scholar 

  22. Takahashi, N., Matsuda, T., Shikami, K., Shimada, I., Arata, Y., Nakamura, R.: A structural study of the asparagine-linked oligosaccharide moiety of duck ovomucoid. Glycoconj. J. 10, 425–434 (1993)

    Article  PubMed  CAS  Google Scholar 

  23. Takahashi, N., Kato, K.: GALAXY (Glycoanalysis by the Three Axes of MS and Chromatography): A web application that assists structural analyses of N-glycans. TIGG (Trends in Glycoscience and Glycotechnology) 15, 235–251 (2003)

    CAS  Google Scholar 

  24. Yagi, H., Takahashi, N., Yamaguchi, Y., Kimura, N., Uchimura, K., Kannagi, R., Kato, K.: Development of structural analysis of sulfated N-glycans by multi-dimensional HPLC mapping methods. Glycobiology 15, 1051–1060 (2005)

    Article  PubMed  CAS  Google Scholar 

  25. Tang, P.W., Feizi, T.: Neoglycolipid micro-immunoassays applied to the oligosaccharides of human milk galactosyltransferase detect blood-group related antigens on both O- and N-linked chains. Carbohydr. Res. 161, 133–143 (1987)

    Article  PubMed  CAS  Google Scholar 

  26. Feizi, T., Stoll, M.S., Yuen, C.-T., Chai, W., Lawson, A.M.: Neoglycolipids: Probes of oligosaccharide structure, antigenicity, and function. Meth. Enzymol. 230, 484–519 (1994)

    PubMed  CAS  Google Scholar 

  27. Stoll, M.S., Feizi, T.: Preparation of neoglycolipids for structure and function assignments of oligosaccharides. BioMethods 9, 329–348 (1997)

    CAS  Google Scholar 

  28. Skipski, V.P.: Thin layer chromatography of neutral glycosphingolipids. Meth. Enzymol. 35, 396–425 (1975)

    PubMed  CAS  Google Scholar 

  29. Stewart, R.J., Boggs, J.M.: A carbohydrate-carbohydrate interaction between galactosylceramide-containing liposomes and cerebroside sulfate-containing liposomes: Dependence on the glycolipid ceramide composition. Biochemistry 32, 10666–10674 (1993)

    Article  PubMed  CAS  Google Scholar 

  30. Coteron, J.M., Vicent, C., Bosso, C., Penades, S.: Glycophanes, cyclodextrin–cyclophane hybrid receptors for apolar binding in aqueous solutions: A stereoselective carbohydrate-carbohydrate interaction in water. J. Am. Chem. Soc. 115, 10066–10076 (1993)

    Article  CAS  Google Scholar 

  31. Henry, B., Desvaux, H., Pristchepa, M., Berthault, P., Zhang, Y.-M., Mallet, J.-M., Esnault, J., Sinay, P.: NMR study of a Lewisx pentasaccharide derivative: Solution structure and interaction with cations. Carbohydr. Res. 315, 48–62 (1999)

    Article  PubMed  CAS  Google Scholar 

  32. Hernaiz, M.J., de la Fuente, J.M., Barrientos, A.G., Penades, S.: A model system mimicking glycosphingolipid clusters to quantify carbohydrate self-interactions by surface plasmon resonance. Angew. Chem. Intl. Ed. 41, 1554–1557 (2002)

    Article  CAS  Google Scholar 

  33. Matsuura, K., Kitakouji, H., Sawada, N., Ishida, H., Kiso, M., Kitajima, K., Kobayashi, K.: A quantitative estimation of carbohydrate–carbohydrate interaction using clustered oligosaccharides of glycolipid monolayers and of artificial glycoconjugate polymers by surface plasmon resonance. J. Am. Chem. Soc. 122, 7406–7407 (2000)

    Article  CAS  Google Scholar 

  34. Tromas, C., Rojo, J., de la Fuente, J.M., Barrientos, A.G., Garcia, R., Penades, S.: Adhesion forces between LewisX determinant antigens as measured by atomic force microscopy. Angew. Chem. Intl. Ed. 40, 3052–3055 (2001)

    Article  CAS  Google Scholar 

  35. de la Fuente, J.M., Eaton, P., Barrientos, A.G., Menendez, M., Penades, S.: Thermodynamic evidence for Ca2+-mediated self-aggregation of Lewis X gold glyconanoparticles. A model for cell adhesion via carbohydrate–carbohydrate interaction. J. Am. Chem. Soc. 127, 6192–6197 (2005)

    Article  PubMed  CAS  Google Scholar 

  36. Siuzdak, G., Ichikawa, Y., Caulfield, T.J., Munoz, B., Wong, C.-H., Nicolaou, K.C.: Evidence of Ca2+-dependent carbohydrate association through ion spray mass spectrometry. J. Am. Chem. Soc. 115, 2877–2881 (1993)

    Article  CAS  Google Scholar 

  37. Koshy, K.M., Boggs, J.M.: Investigation of the calcium-mediated association between the carbohydrate head groups of galactosylceramide and galactosylceramide I3 sulfate by electrospray ionization mass spectrometry. J. Biol. Chem. 271, 3496–3499 (1996)

    Article  PubMed  CAS  Google Scholar 

  38. Carvalho de Souza, A., Halkes, K.M., Meeldijk, J.D., Verkleij, A.J., Vliegenthart, J.F., Kamerling, J.P.: Gold glyconanoparticles as probes to explore the carbohydrate-mediated self-recognition of marine sponge cells. Chembiochem. 6, 828–831 (2005)

    Article  PubMed  CAS  Google Scholar 

  39. Bovin, N.V.: Carbohydrate–carbohydrate interaction. In: Gabius, H.J., Gabius, S. (eds.) In Glycosciences: Status and Perspectives, pp. 277–289. Chapman & Hall, London (1997)

    Google Scholar 

  40. Hakomori, S.: Carbohydrate-to-carbohydrate interaction in basic cell biology: A brief overview. Arch. Biochem. Biophys. 426, 173–181 (2004)

    Article  PubMed  CAS  Google Scholar 

  41. Rojo, J., Morales, J.C., Penades, S.: Carbohydrate-carbohydrate interactions in biological and model systems. Topics Curr. Chem. 218, 45–92 (2002)

    Article  CAS  Google Scholar 

  42. Kojima, N., Fenderson, B.A., Stroud, M.R., Goldberg, R.I., Habermann, R., Toyokuni, T., Hakomori, S.: Further studies on cell adhesion based on Le(x)–Le(x) interaction, with new approaches: embryoglycan aggregation of F9 teratocarcinoma cells, and adhesion of various tumour cells based on Le(x) expression. Glycoconj. J. 11, 238–248 (1994)

    Article  PubMed  CAS  Google Scholar 

  43. Yu, S., Withers, D.A., Hakomori, S.: Globoside-dependent adhesion of human embryonal carcinoma cells, based on carbohydrate-carbohydrate interaction, initiates signal transduction and induces enhanced activity of transcription factors AP1 and CREB. J. Biol. Chem. 273, 2517–2525 (1998)

    Article  Google Scholar 

  44. Yu, S., Kojima, N., Hakomori, S., Kudo, S., Inoue, S., Inoue, Y.: Binding of rainbow trout sperm to egg is mediated by strong carbohydrate-to-carbohydrate interaction between (KDN)GM3 (deaminated neuraminyl ganglioside) and Gg3-like epitope. Proc. Natl. Acad. Sci. USA 99, 2854–2859 (2002)

    Article  PubMed  CAS  Google Scholar 

  45. Gourier, C., Pincet, F., Perez, E., Zhang, Y., Zhu, Z., Mallet, J.M., Sinay, P.: The natural LewisX-bearing lipids promote membrane adhesion: influence of ceramide on carbohydrate–carbohydrate recognition. Angew. Chem. Int. Ed. Engl. 44, 1683–1687 (2005)

    Article  PubMed  CAS  Google Scholar 

  46. Santacroce, P.V., Basu, A.: Probing specificity in carbohydrate–carbohydrate interactions with micelles and Langmuir monolayers. Angew. Chem. Intl. Ed. 42,95–98 (2003)

    Article  CAS  Google Scholar 

  47. Akama, T.O., Nakagawa, H., Sugihara, K., Narisawa, S., Ohyama, C., Nishimura, S., O'Brien, D.A., Moremen, K.W., Millan, J.L., Fukuda, M.N.: Germ cell survival through carbohydrate-mediated interaction with Sertoli cells. Science 295, 124–127 (2002)

    Article  PubMed  Google Scholar 

  48. Gao, C.X., Miyoshi, E., Uozumi, N., Takamiya, R., Wang, X., Noda, K., Gu, J., Honke, K., Wada, Y., Taniguchi, N.: Bisecting GlcNAc mediates the binding of annexin V to Hsp47. Glycobiology 15, 1067–1075 (2005)

    Article  PubMed  CAS  Google Scholar 

  49. Hakomori, S., Igarashi, Y.: Functional role of glycosphingolipids in cell recognition and signaling. J. Biochem. (Tokyo) 118, 1091–1103 (1995)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH/ National Institute of General Medical Science (R01 GM070593) by NIH/ National Cancer Institute (R01 CA080054), to SH, by Core Research for Evolutionary Science and Technology, Japan Science and Technology Agency, and by a Grant-in-Aid for Scientific Research on Priority Areas (17046017) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. The Esquire LC mass spectrometer was purchased with support by National Science Foundation under Grant No. 9807748. We thank Dr. Kimie Murayama (Pacific Northwest Research Institute) for advice on ESIMS analysis of OS-PE conjugates, and Dr. Stephen D. Anderson for preparation of the MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen-itiroh Hakomori.

Additional information

All solvent ratios are by volume.

An erratum to this article can be found at http://dx.doi.org/10.1007/s10719-006-9027-7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, SJ., Nakayama, Ki., Takahashi, N. et al. Interaction of N-linked glycans, having multivalent GlcNAc termini, with GM3 ganglioside. Glycoconj J 23, 639–649 (2006). https://doi.org/10.1007/s10719-006-9001-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-006-9001-4

Keywords

Navigation