Skip to main content
Log in

Lectins influence chondrogenesis and osteogenesis in limb bud mesenchymal cells

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The role of cell surface glycoproteins in cell behavior can be characterized by their interactions with plant lectins. This study was designed to identify the effects of lectins on chondrogenesis and osteogenesis in limb bud mesenchymal cells in vitro. Limb bud mesenchymal cells from mouse embryos were cultured in high-density micromass culture. Wheat germ agglutinin (WGA), concanavalin A (ConA), peanut agglutinin (PNA), Dolichos biflorus agglutinin (DBA) and Ricinus communis agglutinin (RCA) were added separately to the culture media. Cells were cultured for 5 or 9 days, and cell viability was assayed by neutral red on day 5. The micromasses were stained with alcian blue, alizarin red S and Von Kossa stains, and alkaline phosphatase assays were also done. Dolichos biflorus agglutinin induced an increase in chondrogenesis, calcium precipitation and proteoglycan production. ConA and PNA did not affect chondrocyte differentiation but induced chondrocytes to produce more proteoglycan. Wheat germ agglutinin reduced chondrification and ossification but induced mesenchymal cells to store lipid droplets. Ricinus communis agglutinin 1 was toxic and significantly reduced cell survival. In conclusion, DBA was the most effective inducer of ossification and chondrification. Wheat germ agglutinin induced adipogenesis instead. These assays showed that lectins play important roles in limb bud development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Helenius, A., Aebi, M.: Intracellular functions of N-Linked Glycans. Science 291, 2364–2369 (2001)

    Article  PubMed  CAS  Google Scholar 

  2. Masnikosa, R., Baricević, I., Jones, D.R., Nedić, O.: Characterisation of insulin-like growth factor receptors and insulin receptors in the human placenta using lectin affinity methods. Growth Horm IGF Res 16, 174–184 (2006)

    Article  PubMed  CAS  Google Scholar 

  3. Wilden, P.A., Morrison, B.D., Pessin, J.E.: Wheat germ agglutinin stimulation of alpha beta heterodimeric insulin receptor beta-subunit autophosphorylation by noncovalent association into an alpha 2 beta 2 heterotetrameric state. Endocrinology 124, 971–979 (1989)

    Article  PubMed  CAS  Google Scholar 

  4. De Lise, A.M., Fischer, L., Tuan, R.S.: Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilage 8, 309–334 (2000)

    Article  Google Scholar 

  5. Zschäbitz, A.: Glycoconjugate expression and cartilage development of the cranial skeleton. Acta Anat (Basel) 161, 254–274 (1998)

    Article  Google Scholar 

  6. Milaire, J.: Lectin binding sites in developing mouse limb buds. Anat Embryol 184, 479–488 (1991)

    Article  PubMed  CAS  Google Scholar 

  7. Oda, R., Suardita, K., Fujimoto, K., Pan, H., Yan, W., Shimazu, A., Shintani, H., Kato, Y.: Anti-membrane-bound transferrin-like protein antibodies induce cell-shape change and chondrocyte differentiation in the presence or absence of concanavalin A. J Cell Sci 116, 2029–2038 (2003)

    Article  PubMed  CAS  Google Scholar 

  8. Toegel, S., Harrer, N., Plattner, V.E., Unger, F.M., Viernstein, H., Goldring, M.B., Gabor, F., Wirth, M.: Lectin binding studies on C-28/I2 and T/C-28a2 chondrocytes provide a basis for new tissue engineering and drug delivery perspectives in cartilage research. J Control Release 117, 121–129 (2007)

    Article  PubMed  CAS  Google Scholar 

  9. Zimmermann, B., Thies, M.: Alterations of lectin binding during chondrogenesis of mouse limb buds. Histochemistry 81, 353–361 (1984)

    Article  PubMed  CAS  Google Scholar 

  10. Zschäbitz, A., Krahn, V., Schmidt, W., Gabius, H.J., Weiser, H., Biesalski, H.K., Kunt, T., Koepp, H., Stofft, E.: Expression patterns of complex glycoconjugates and endogenous lectins during fetal development of the viscerocranium. Ann Anat 181, 117–121 (1999)

    Article  PubMed  Google Scholar 

  11. Włodarski, P.K., Galus, R., Włodarski, K.H., Brodzikowska, A.: Heterotopic osteogenesis by murine demineralized incisors at lesions sites induced by concanavalin a in mice. Connect Tissue Res 50, 1–6 (2009)

    Article  PubMed  Google Scholar 

  12. Von Vlasselaer, P., Falla, N., Snoeck, H., Mathieu, E.: Characterization and purification of osteogenic cells from murine bone marrow by two-color cell sorting using anti-sca-l monoclonal antibody and wheat germ agglutinin. Blood 84, 753–763 (1994)

    PubMed  Google Scholar 

  13. Stringa, E., Tuan, R.S.: Chondrogenic cell subpopulation of chick embryonic calvarium: isolation by peanut agglutinin affinity chromatography and in vitro characterization. Anat Embryol Berl 194, 427–437 (1996)

    Article  PubMed  CAS  Google Scholar 

  14. Kulyk, W.M., Hoffman, L.M.: Ethanol exposure stimulates cartilage differentiation by embryonic limb mesenchyme cells. Exp Cell Res 223, 290–300 (1996)

    Article  PubMed  CAS  Google Scholar 

  15. Weis, W.I., Drickamer, K.: Structure basis of lectin-carbohydrate recognition. Annu Rev Biochem 65, 441–473 (1996)

    Article  PubMed  CAS  Google Scholar 

  16. Lotan, R., Skutelsky, E., Danon, D., Sharon, N.: The purification, composition, and specificity of the anti-T lectin from peanut (Arachis hypogaea). J Biol Chem 250, 8518–8523 (1975)

    PubMed  CAS  Google Scholar 

  17. Etzler, M.E., Gupta, S., Borrebaeck, C.: Carbohydrate binding properties of the Dolichos biflorus lectin and its subunits. J Biol Chem 256, 2367–2370 (1981)

    PubMed  CAS  Google Scholar 

  18. Nicolson, G.L., Blaustein, J., Etzler, M.E.: Characterization of two plant lectins from Ricinus communis and their quantitative interaction with a murine lymphoma. Biochemistry 13, 196–204 (1974)

    Article  PubMed  CAS  Google Scholar 

  19. Montreull, J.F.G., Vliegenthart, H., Schachter, I.: Glycoproteins II. In: Goldstein, I.J., Winter, H.C., Poretz, R.D. (eds.) Plant lectins: tools for the study of complex carbohydrates, pp. 403–474. Elsevier Sciences, Amsterdam (1997)

    Google Scholar 

  20. Hansen, L.M., Carney, E.W., Harris, C.: Altered differentiation in rat and rabbit limb bud micromass cultures by glutathione modulating agents. Free Radic Biol Med 31, 1582–1592 (2001)

    Article  PubMed  CAS  Google Scholar 

  21. Stanton, L.A., Sabari, S., Arthur, V., Sampaio, A.V., Underhill, T.M., Beier, F.: P38 MAP kinase signalling is required for hypertrophic chondrocyte differentiation. Biochem J 378, 53–62 (2004)

    Article  PubMed  CAS  Google Scholar 

  22. Orimo, H., Shimada, T.: The role of tissue-nonspecific alkaline phosphatase in the phosphate-induced activation of alkaline phosphatase and mineralization in SaOS-2 human osteoblast-like cells. Mol Cell Biochem 315, 51–60 (2008)

    Article  PubMed  CAS  Google Scholar 

  23. Macrae, V.E., Davey, M.G., McTeir, L., Narisawa, S., Yadav, M.C., Millan, J.L., Farquharson, C.: Inhibition of PHOSPHO1 activity results in impaired skeletal mineralization during limb development of the chick. Bone 46, 1146–1155 (2010)

    Article  PubMed  CAS  Google Scholar 

  24. Nishimura, H., Nishimura, M., Oda, R., Yamanaka, K., Matsubara, T., Ozaki, Y., Sekiya, K., Hamada, T., Kato, Y.: Lectins induce resistance to proteases and/or mechanical stimulus in all examined cells–including bone marrow mesenchymal stem cells on various scaffolds. Exp Cell Res 295, 119–127 (2004)

    Article  PubMed  CAS  Google Scholar 

  25. Nakamura, A., Ly, C., Cipetić, M., Sims, N.A., Vieusseux, J., Kartsogiannis, V., Bouralexis, S., Saleh, H., Zhou, H., Price, J.T., Martin, T.J., Ng, K.W., Gillespie, M.T., Quinn, J.M.: Osteoclast inhibitory lectin (OCIL) inhibits osteoblast differentiation and function in vitro. Bone 40, 305–315 (2006)

    Article  PubMed  Google Scholar 

  26. Singh, R., Subramanian, S., Rhodes, J.M., Campbell, B.J.: Peanut lectin stimulates proliferation of colon cancer cells by interaction with glycosylated CD44v6 isoforms and consequential activation of c-Met and MAPK: functional implications for disease-associated glycosylation changes. Glycobiology 16, 594–601 (2006)

    Article  PubMed  CAS  Google Scholar 

  27. Nitta, K., Ozaki, K., Ishikawa, M., Furusawa, S., Hosono, M., Kawauchi, H., Sasaki, K.I., Takayanagi, Y., Tsuiki, S., Hakomori, S.I.: Inhibition of cell proliferation by rana catesbeiana and rana japonica lectins belonging to the ribonuclease superfamily. Cancer Res 54, 920–927 (1994)

    PubMed  CAS  Google Scholar 

  28. Nakamura, H., Ozawa, H.: Ultrastructural, enzyme-, lectin, and immunohistochemical studies of the erosion zone in rat tibiae. J Bone Miner Res 11, 1158–1164 (1996)

    Article  PubMed  CAS  Google Scholar 

  29. Yan, W., Pan, H., Ishida, H., Nakashima, K., Suzuki, F., Nishimura, M., Jikko, A., Oda, R., Kato, Y.: Effects of concanavalin A on chondrocyte hypertrophy and matrix calcification. J Biol Chem 272, 7833–7840 (1997)

    Article  PubMed  CAS  Google Scholar 

  30. Sekiya, K., Nishimura, M., Suehiro, F., Nishimura, H., Hamada, T., Kato, Y.: Enhancement of osteogenesis by concanavalin A in human bone marrow mesenchymal stem cell cultures. Int J Artif Organs 31, 708–715 (2008)

    PubMed  CAS  Google Scholar 

  31. Diaz-Flores, L., Gutierrez, R., Lopez-Alonso, A., Gonzalez, R., Varela, H.: Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis. Clin Orthop 275, 280–286 (1992)

    PubMed  Google Scholar 

  32. Livingston, J.N., Purvis, B.J.: Effects of wheat germ agglutinin on insulin binding and insulin sensitivity of fat cells. Am J Physiol 238, 267–275 (1980)

    Google Scholar 

  33. Zimmermann, B.: Binding of various lectins during chondrogenesis in mouse limb buds. Acta Histochem Suppl 32, 127–131 (1986)

    PubMed  CAS  Google Scholar 

  34. Masnikosa, R., Baričević, I., Lagundžin, D., Nedić, O.: Characterisation of N-glycans bound to IGFBP-3 in sera from healthy adults. Biochimie 92, 97–101 (2010)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the research deputy of Shiraz University for financial support and Mr E Noori for technical support. We also thank K. Shashok (AuthorAID in the Eastern Mediterranean) for improving the use of English in the manuscript, and M. Gholami at the Center for Development of Clinical Research of Nemazee Hospital for research assistance. This research was done in fulfillment of the requirements for the MS degree defended by M Ghasemi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahereh Talaei-Khozani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talaei-Khozani, T., Monsefi, M. & Ghasemi, M. Lectins influence chondrogenesis and osteogenesis in limb bud mesenchymal cells. Glycoconj J 28, 89–98 (2011). https://doi.org/10.1007/s10719-011-9326-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-011-9326-5

Keywords

Navigation