Skip to main content
Log in

Development of delivery methods for carbohydrate-based drugs: controlled release of biologically-active short chain fatty acid-hexosamine analogs

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Carbohydrates are attractive candidates for drug development because sugars are involved in many, if not most, complex human diseases including cancer, immune dysfunction, congenital disorders, and infectious diseases. Unfortunately, potential therapeutic benefits of sugar-based drugs are offset by poor pharmacologic properties that include rapid serum clearance, poor cellular uptake, and relatively high concentrations required for efficacy. To address these issues, pilot studies are reported here where ‘Bu4ManNAc’, a short chain fatty acid-monosaccharide hybrid molecule with anti-cancer activities, was encapsulated in polyethylene glycol-sebacic acid (PEG-SA) polymers. Sustained release of biologically active compound was achieved for over a week from drug-laden polymer formulated into microparticles thus offering a dramatic improvement over the twice daily administration currently used for in vivo studies. In a second strategy, a tributanoylated ManNAc analog (3,4,6-O-Bu3ManNAc) with anti-cancer activities was covalently linked to PEG-SA and formulated into nanoparticles suitable for drug delivery; once again release of biologically active compound was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

PEG:

poly(ethylene glycol)

poly(PEG-SA):

poly(polyethylene glycol-co-sebacic anhydride)

poly(PEG-SA):1 :

Compound 1 (Bu4ManNAc) non-covalently encapsulated in poly(PEG-SA)

polySA-2 :

Compound 2 (3,4,6-O-Bu3ManNAc) covalently linked to polySA-2

polySA-2-NP:

nanoparticles formulated from polySA-2

PVA:

poly(vinyl alcohol).

AUC:

area under the curve

References

  1. Liu, H., Zhang, Z., Linhardt, R.J.: Lessons learned from the contamination of heparin. Nat. Prod. Rep. 26, 313–321 (2009)

    Article  PubMed  CAS  Google Scholar 

  2. Meutermans, W., Le, G.T., Becker, B.: Carbohydrates as scaffolds in drug discovery. ChemMedChem 1, 1164–1194 (2006)

    Article  PubMed  CAS  Google Scholar 

  3. Elmouelhi, N., Aich, U., Paruchuri, V.D.P., Meledeo, M.A., Campbell, C.T., Wang, J.J., Srinivas, R., Khanna, H.S., Yarema, K.J.: Hexosamine template. A platform for modulating gene expression and for sugar-based drug discovery. J. Med. Chem. 52, 2515–2530 (2009)

    Article  PubMed  CAS  Google Scholar 

  4. Kayser, H., Zeitler, R., Kannicht, C., Grunow, D., Nuck, R., Reutter, W.: Biosynthesis of a nonphysiological sialic acid in different rat organs, using N-propanoyl-D-hexosamines as precursors. J. Biol. Chem. 267, 16934–16938 (1992)

    PubMed  CAS  Google Scholar 

  5. Du, J., Meledeo, M.A., Wang, Z., Khanna, H.S., Paruchuri, V.D., Yarema, K.J.: Metabolic glycoengineering: Sialic acid and beyond. Glycobiology 19, 1382–1401 (2009)

    Article  PubMed  CAS  Google Scholar 

  6. Sarkar, A.K., Fritz, T.A., Taylor, W.H., Esko, J.D.: Disaccharide uptake and priming in animal cells: inhibition of sialyl Lewis X by acetylated Gal β1, 4GlcNAc β-O-naphthalenemethanol. Proc. Natl. Acad. Sci. U.S.A. 92, 3323–3327 (1995)

    Article  PubMed  CAS  Google Scholar 

  7. Kim, E.J., Sampathkumar, S.-G., Jones, M.B., Rhee, J.K., Baskaran, G., Yarema, K.J.: Characterization of the metabolic flux and apoptotic effects of O-hydroxyl- and N-acetylmannosamine (ManNAc) analogs in Jurkat (human T-lymphoma-derived) cells. J. Biol. Chem. 279, 18342–18352 (2004)

    Article  PubMed  CAS  Google Scholar 

  8. Aich, U., Campbell, C.T., Elmouelhi, N., Weier, C.A., Sampathkumar, S.-G., Choi, S.S., Yarema, K.J.: Regioisomeric SCFA attachment to hexosamines separates metabolic flux from cytotoxcity and MUC1 suppression. ACS Chem. Biol. 3, 230–240 (2008)

    Article  PubMed  CAS  Google Scholar 

  9. Campbell, C.T., Aich, U., Weier, C.A., Wang, J.J., Choi, S.S., Wen, M.M., Maisel, K., Sampathkumar, S.-G., Yarema, K.J.: Targeting pro-invasive oncogenes with short chain fatty acid-hexosamine analogs inhibits the mobility of metastatic MDA-MB-231 breast cancer cell. J. Med. Chem. 51, 8135–8147 (2008)

    Article  PubMed  CAS  Google Scholar 

  10. Sampathkumar, S.-G., Jones, M.B., Meledeo, M.A., Campbell, C.T., Choi, S.S., Hida, K., Gomutputra, P., Sheh, A., Gilmartin, T., Head, S.R., Yarema, K.J.: Targeting glycosylation pathways and the cell cycle: sugar- dependent activity of butyrate-carbohydrate cancer prodrugs. Chem. Biol. 13, 1265–1275 (2006)

    Article  PubMed  CAS  Google Scholar 

  11. Wang, Z., Du, J., Che, P.-L., Meledeo, M.A., Yarema, K.J.: Hexosamine analogs: from metabolic glycoengineering to drug discovery. Curr. Opin. Chem. Biol. 13, 565–572 (2009)

    Article  PubMed  CAS  Google Scholar 

  12. Viswanathan, K., Lawrence, S., Hinderlich, S., Yarema, K.J., Lee, Y.C., Betenbaugh, M.: Engineering sialic acid synthetic ability into insect cells: identifying metabolic bottlenecks and devising strategies to overcome them. Biochemistry 42, 15215–15225 (2003)

    Article  PubMed  CAS  Google Scholar 

  13. Campbell, C.T., Sampathkumar, S.-G., Weier, C., Yarema, K.J.: Metabolic oligosaccharide engineering: perspectives, applications, and future directions. Mol. Biosyst. 3, 187–194 (2007)

    Article  PubMed  CAS  Google Scholar 

  14. Aich, U., Yarema, K.J.: Metabolic oligosaccharide engineering: perspectives, applications, and future directions. In: Fraser-Reid, B., Tatsuta, K., Thiem, J. (eds.) Glycosciences, 2nd edn, pp. 2136–2190. Springer-Verlag, Berlin (2008)

    Google Scholar 

  15. Sarkar, A.K., Brown, J.R., Esko, J.D.: Synthesis and glycan priming activity of acetylated disaccharides. Carbohydr. Res. 329, 287–300 (2000)

    Article  PubMed  CAS  Google Scholar 

  16. Gagiannis, D., Gossrau, R., Reutter, W., Zimmermann-Kordmann, M., Horstkorte, R.: Engineering the sialic acid in organs of mice using N-propanoylmannosamine. Biochim. Biophys. Acta 1770, 297–306 (2007)

    PubMed  CAS  Google Scholar 

  17. Fu, J., Fiegel, J., Krauland, E., Hanes, J.: New polymeric carriers for controlled drug delivery following inhalation or injection. Biomaterials 23, 4425–4433 (2002)

    Article  PubMed  CAS  Google Scholar 

  18. Zhang, I., Gu, F.X., Chan, J.M., Wang, A.Z., Langer, R.S., Farokhzad, O.C.: Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther. 83, 761–769 (2008)

    Article  PubMed  CAS  Google Scholar 

  19. Quick, D.J., Macdonald, K.K., Anseth, K.S.: Delivering DNA from photocrosslinked, surface eroding polyanhydrides. J. Control. Release 97, 333–343 (2004)

    Article  PubMed  CAS  Google Scholar 

  20. Jones, M.B., Teng, H., Rhee, J.K., Baskaran, G., Lahar, N., Yarema, K.J.: Characterization of the cellular uptake and metabolic conversion of acetylated N-acetylmannosamine (ManNAc) analogues to sialic acids. Biotechnol. Bioeng. 85, 394–405 (2004)

    Article  PubMed  CAS  Google Scholar 

  21. Tanner, M.E.: The enzymes of sialic acid biosynthesis. Bioorg. Chem. 33, 216–228 (2005)

    Article  PubMed  CAS  Google Scholar 

  22. Luchansky, S.J., Yarema, K.J., Takahashi, S., Bertozzi, C.R.: GlcNAc 2-epimerase can serve a catabolic role in sialic acid metabolism. J. Biol. Chem. 278, 8036–8042 (2003)

    Article  Google Scholar 

  23. Sampathkumar, S.-G., Campbell, C.T., Weier, C., Yarema, K.J.: Short-chain fatty acid-hexosamine cancer prodrugs: the sugar matters! Drug. Future 31, 1099–1116 (2006)

    Article  CAS  Google Scholar 

  24. Lavis, L.D.: Ester bonds in prodrugs. ACS Chem. Biol. 3, 203–206 (2008)

    Article  PubMed  CAS  Google Scholar 

  25. Luchansky, S.J., Argade, S., Hayes, B.K., Bertozzi, C.R.: Metabolic functionalization of recombinant glycoproteins. Biochemistry 43, 12358–12366 (2004)

    Article  PubMed  CAS  Google Scholar 

  26. Whalen, M.M., Wild, G.C., Spall, W.D., Sebring, R.J.: Separation of underivatized gangliosides by ion exchange high performance liquid chromatography. Lipids 21, 267–270 (1986)

    Article  PubMed  CAS  Google Scholar 

  27. Kim, E.J., Jones, M.B., Rhee, J.K., Sampathkumar, S.-G., Yarema, K.J.: Establishment of N-acetylmannosamine (ManNAc) analogue-resistant cell lines as improved hosts for sialic acid engineering applications. Biotechnol. Prog. 20, 1674–1682 (2004)

    Article  PubMed  Google Scholar 

  28. Jourdian, G.W., Dean, L., Roseman, S.: The sialic acids. XI. A periodate-resorcinol method for the quantitative estimation of free sialic acids and their glycosides. J. Biol. Chem. 246, 430–435 (1971)

    PubMed  CAS  Google Scholar 

  29. Yarema, K.J., Goon, S., Bertozzi, C.R.: Metabolic selection of glycosylation defects in human cells. Nat. Biotechnol. 19, 553–558 (2001)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this project was provided by the National Institutes of Health (CA11231404) for SCFA-hexosamine synthesis and analysis of anti-metastatic responses in MDA-MB-231 cells, (EB005692-03 for synthesis and evaluation of sebacic acid-PEG polymers), and the Johns Hopkins Institute for NanoBioTechnology (INBT, for the synthesis and biological evaluation of the covalently-conjugated nanoparticles).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Yarema.

Additional information

Udayanath Aich, M. Adam Meledeo, Srinivasa-Gopalan Sampathkumar and Jie Fu contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 560 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aich, U., Meledeo, M.A., Sampathkumar, SG. et al. Development of delivery methods for carbohydrate-based drugs: controlled release of biologically-active short chain fatty acid-hexosamine analogs. Glycoconj J 27, 445–459 (2010). https://doi.org/10.1007/s10719-010-9292-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-010-9292-3

Keywords

Navigation